Skip to main content
Log in

Calculation of two-point resistances for conducting media needs regularization of Coulomb singularities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The definition of the electrical resistance between two arbitrary points of a conducting d -dimensional medium is clarified and we show that the calculation of such two-point resistances in the ideal case needs the regularization of Coulomb singularities located at current input and output points. The case of 2 -dimensional media stands apart from other dimensionality because of the scale invariance of the fundamental solution for the Laplacian operator on the plane. The regularization of logarithmic Coulomb singularities implies that the resistance between two arbitrary points is an indeterminable constant conventionally chosen as zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ida, Engineering Electromagnetics, 2nd edition (Springer Publishing Company, Incorporated, 2007)

  2. B. Van Der Pol, H. Bremmer, Operational Calculus: Based on the Two-sided Laplace Integral (University Press, 1950)

  3. J. Cserti, Am. J. Phys. 68, 896 (2000)

    Article  ADS  Google Scholar 

  4. F.Y. Wu, J. Phys. A 37, 6653 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.H. Asad, J. Stat. Phys. 150, 1177 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Venezian, Am. J. Phys. 62, 1000 (1994)

    Article  ADS  Google Scholar 

  7. M.A. Jafarizadeh, R. Sufiani, S. Jafarizadeh, J. Phys. A 40, 4949 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.G. Doyle, L. Snell, Random Walks and Electric Networks, in Carus Mathematical Monographs, First Printing edition (Mathematical Association of America, 1984)

  9. B. Van der Pol, The finite-difference analogy of the periodic wave equation and the potential equation, in Probability and Related Topics in Physical Sciences, edited by M. Kac, Lecture in Applied Mathematics, Vol. 1 (Interscience Edition, London, 1959)

  10. L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958)

    Google Scholar 

  11. J.D. Weiss, R.J. Kaplar, K.E. Kambour, Solid-State Electron. 52, 91 (2008)

    Article  ADS  Google Scholar 

  12. D.W. Koon, Rev. Sci. Instrum. 60, 271 (1989)

    Article  ADS  Google Scholar 

  13. J.L. Cieśliński, Thin Solid Films 522, 314 (2012)

    Article  ADS  Google Scholar 

  14. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Editors), NIST Handbook of Mathematical Functions (Cambridge University Press, New York, NY, 2010) see also NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/

  15. L.C. Evans, Partial Differential Equations (American Mathematical Society, 1998)

  16. Y.Y. Melamed, M. Lin, Principle of sufficient reason, in The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta (Metaphysics Research Lab, Stanford University, 2018)

  17. D. Boito, L.N.S. de Andrade, G. de Sousa, R. Gama, C.Y.M. London, On Maxwell’s electrodynamics in two spatial dimensions, arXiv:1809.07368

  18. I.M. Gel’fand, G.E. Shilov, Generalized Functions: Properties and Operations, Vol. 1 (Academic Press, 1964)

  19. S. Giordano, Int. J. Circ. Theory Appl. 33, 519 (2005)

    Article  Google Scholar 

  20. S. Giordano, Physica A 375, 726 (2007)

    Article  ADS  Google Scholar 

  21. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, PMS-32 (Princeton University Press, 1971)

  22. Z. Maassarani, J. Phys. A 33, 5675 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Katsura, T. Morita, S. Inawashiro T. Horiguchi, Y. Abe, J. Math. Phys. 12, 892 (1971)

    Article  ADS  Google Scholar 

  24. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 2000)

  25. J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques (Hermann, Paris, 1932)

  26. L. Blanchet, G. Faye, J. Math. Phys. 41, 7675 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965)

  28. P.M. Chaikin, T.C. Lubenskii, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

  29. E.A. Abbott, Flatland: A Romance of Many Dimensions (Classic science fiction, Penguin, 1984)

  30. B.D. Hughes, Random Walks and Random Environments: Random Walks, Vol. 1 (Oxford science publications, Clarendon Press, 1995)

  31. P. Lessa, Recurrence vs. transience: An introduction to random walks, in Dynamics Done with Your Bare Hands, edited by F. Ledrappier, F. Dal’Bo, A. Wilkinson, EMS Series of Lectures in Mathematics (Zürich, 2016)

  32. G. Pólya, Math. Ann. 84, 149 (1921)

    Article  MathSciNet  Google Scholar 

  33. I. Benjamini, R. Pemantle, Y. Peres, J. Theor. Probab. 9, 231 (1996)

    Article  Google Scholar 

  34. M. Mamode, J. Phys. Commun. 1, 035002 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Mamode.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamode, M. Calculation of two-point resistances for conducting media needs regularization of Coulomb singularities. Eur. Phys. J. Plus 134, 559 (2019). https://doi.org/10.1140/epjp/i2019-12929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12929-x

Navigation