Skip to main content
Log in

Elastic properties of vertically aligned carbon nanotubes: A molecular dynamics study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present study, the mechanical properties of vertically aligned carbon nanotube (VACNT) arrays in the most general case of anisotropic elasticity is studied. To quantify the elastic stiffness coefficients, continuum mechanics is employed, in which the constitutive relation is formulized in terms of the interatomic potential obtained via molecular dynamics (MDs) simulations. Detailed investigations into elastic stiffness coefficients with different geometrical parameters are performed and, consequently, their sensitivity on length and radius parameters is hereby studied. With such study it would be possible to tune the mechanical properties of VACNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Georgantzinos, G.I. Giannopoulos, Diam. Relat. Mater. 80, 27 (2017)

    Article  ADS  Google Scholar 

  2. Z.L. Lv, H.L. Cui, H. Wang, X.H. Li, G.F. Ji, Diam. Relat. Mater. 71, 73 (2017)

    Article  ADS  Google Scholar 

  3. T. Pataki, G. Kakuk, I. Zsoldos, Diam. Relat. Mater. 16, 288 (2007)

    Article  ADS  Google Scholar 

  4. E. Theocharous, C.J. Chunnilall, R. Mole, D. Gibbs, N. Fox, N. Shang, G. Howlett, B. Jensen, R. Taylor, J.R. Reveles, O.B. Harris, Opt. Express 22, 7290 (2014)

    Article  ADS  Google Scholar 

  5. B.K. Wittmaack, A.H. Banna, A.N. Volkov, L.V. Zhigilei, Carbon 130, 69 (2018)

    Article  Google Scholar 

  6. X. Ji, W. Zhang, X. Li, H. Yu, H. Dong, Diam. Relat. Mater. 77, 16 (2017)

    Article  ADS  Google Scholar 

  7. C.T. Wirth, S. Hofmann, J. Robertson, Diam. Relat. Mater. 17, 1518 (2008)

    Article  ADS  Google Scholar 

  8. I.Y. Bu, K. Hou, D. Engstrom, Diam. Relat. Mater. 20, 746 (2011)

    Article  ADS  Google Scholar 

  9. A. Rizzo, R. Rossi, M.A. Signore, E. Piscopiello, L. Capodieci, R. Pentassuglia, T. Dikonimos, R. Giorgi, Diam. Relat. Mater. 17, 1502 (2008)

    Article  ADS  Google Scholar 

  10. S. Belhenini, T. Labbaye, C. Boulmer-Leborgne, E. Kovacevic, A. Tougui, F. Dosseul, Mech. Res. Commun. 85, 16 (2017)

    Article  Google Scholar 

  11. Kilho Eom, Kihwan Nam, Huihun Jung, Pilhan Kim, Michael S. Strano, Jae-Hee Han, Taeyun Kwon, Carbon 65, 305 (2013)

    Article  Google Scholar 

  12. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, Proc. Natl. Acad. Sci. 106, 6044 (2009)

    Article  ADS  Google Scholar 

  13. N.G. Chechenin, P.N. Chernykh, E.A. Vorobyeva, O.S. Timofeev, Appl. Surf. Sci. 275, 217 (2013)

    Article  ADS  Google Scholar 

  14. N. Yang, S.K. Youn, C.E. Frouzakis, H.G. Park, Carbon 130, 607 (2018)

    Article  Google Scholar 

  15. S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Appl. Phys. Lett. 82, 3520 (2003)

    Article  ADS  Google Scholar 

  16. S. Rahmanian, A.R. Suraya, R. Zahari, E.S. Zainudin, Appl. Surf. Sci. 271, 424 (2013)

    Article  ADS  Google Scholar 

  17. Y. Li, J. Kang, J.B. Choi, J.D. Nam, J. Suhr, Nanotechnology 26, 245701 (2015)

    Article  ADS  Google Scholar 

  18. F. Márquez, V. Lopez, C. Morant, R. Roque-Malherbe, C. Domingo, E. Elizalde, F. Zamora, J. Nanomater. 106, 6044 (2010)

    Google Scholar 

  19. M. Rana, M.M. Asyraf, Microelectron. Eng. 162, 93 (2016)

    Article  Google Scholar 

  20. F. Mehralian, Y. Tadi Beni, J. Mol. Model. 23, 330 (2017)

    Article  Google Scholar 

  21. B. Javvaji, P.R. Budarapu, V.K. Sutrakar, D.R. Mahapatra, M. Paggi, G. Zi, T. Rabczuk, Comput. Mater. Sci. 125, 319 (2016)

    Article  Google Scholar 

  22. S. Sharma, R. Chandra, P. Kumar, N. Kumar, Comput. Mater. Sci. 86, 1 (2014)

    Article  Google Scholar 

  23. S. Govindjee, J.L. Sackman, Solid State Commun. 110, 227 (1999)

    Article  ADS  Google Scholar 

  24. M.M. Shokrieh, R. Rafiee, Mater. Des. 31, 790 (2010)

    Article  Google Scholar 

  25. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  26. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  27. B. WenXing, Z. ChangChun, C. WanZhao, Physica B 352, 156 (2004)

    Article  ADS  Google Scholar 

  28. L.A., Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Firouz-Abadi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehralian, F., Firouz-Abadi, R.D. & Vahid Moshtagh, A. Elastic properties of vertically aligned carbon nanotubes: A molecular dynamics study. Eur. Phys. J. Plus 134, 544 (2019). https://doi.org/10.1140/epjp/i2019-12903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12903-8

Navigation