Skip to main content
Log in

Microscopic insight into low level systematics and negative-parity yrast bands in odd-mass \(\mathrm{{}^{ 111\mbox{--}127}Cd}\)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Aiming at investigating the nuclear structure and the evolution of the deformation in Z = 48 Cd nuclei, which have only two protons less than the Z = 50 magic Sn, we have carried out a microscopic study of negative-parity high-spin states of odd-mass 111-127 Cd nuclei using the theoretical framework of projected shell model (PSM). The results have been obtained for the deformation systematics of the first excited state \( E(15/2^-)\) , yrast energy ratios ( \( R_{2/1}\) , yrast spectra, band crossings, backbending phenomena and B(E2) transition probabilities. The present calculations have reproduced the observed nuclear-structure properties quite successfully. It turns out from the results that the gradual and weak deformation in the entire mass chain of the cadmium isotopes under study is intricately linked to the non-degenerate nature of the quasi-particle valence orbits near the Fermi level for neutrons, which hinders the onset of deformations in these isotopes at \( N\geq 60\) . These isotopes are found to have weak prolate deformation in their ground states, 117Cd being the most deformed. Some higher-spin states have also been predicted in this work for which experimental data is not available yet. B(E2) values have also been reported, for the first time, in this work and are open for their experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    ADS  Google Scholar 

  2. M. Gorska et al., Phys. Rev. Lett. 79, 2415 (1997)

    ADS  Google Scholar 

  3. A. Jungclaus et al., Phys. Rev. Lett. 99, 132501 (2007)

    ADS  Google Scholar 

  4. D.T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013)

    ADS  Google Scholar 

  5. J. Hakala et al., Phys. Rev. Lett. 109, 032501 (2012)

    ADS  Google Scholar 

  6. T. Kautzsch et al., Eur. Phys. J. A 9, 201 (2000)

    ADS  Google Scholar 

  7. I. Dillmann et al., Phys. Rev. Lett. 91, 162503 (2003)

    ADS  Google Scholar 

  8. A. Jungclaus, J.L. Egido, Phys. Scr. T 125, 53 (2006)

    ADS  Google Scholar 

  9. T.R. Rodriguez, J.L. Egido, A. Jungclaus, Phys. Lett. B 668, 410 (2008)

    ADS  Google Scholar 

  10. P.E. Garrett, J.L. Wood, J. Phys. G 37, 064028 (2010)

    ADS  Google Scholar 

  11. H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, M. Wiescher, Phys. Rev. Lett. 86, 3471 (2001)

    ADS  Google Scholar 

  12. K.-L. Kratz, J.-P. Bitouzet, F.-K. Thielemann, P. Moeller, B. Pfeiffer, Astrophys. J. 403, 216 (1993)

    ADS  Google Scholar 

  13. Y.X. Luo et al., Nucl. Phys. A 874, 32 (2012)

    ADS  Google Scholar 

  14. M. Meyer, R. Beraud, A. Charvet, R. Duait, J. Treherne, J. Genevey, Phys. Rev. C 22, 589 (1980)

    ADS  Google Scholar 

  15. D. Jerrestam et al., Nucl. Phys. A 545, 835 (1992)

    ADS  Google Scholar 

  16. P.H. Regan et al., Phys. Rev. C 49, 1885 (1994)

    ADS  Google Scholar 

  17. M. Meyer, R. Beraud, J. Dani$\mu$ere, R. Rougny, J. Rivier, J. Treherne, D. Barneoud, Phys. Rev. C 12, 1858 (1975)

    ADS  Google Scholar 

  18. N. Redon, J. Meyer, Ph. Quentin, P. Bonche, H. Flocard, P.H. Heenen, Phys. Rev. C 38, 550 (1988)

    ADS  Google Scholar 

  19. N. Redon, PhD Thesis, Lyon-1 University (1987)

  20. Sadek Zeghib, Phys. Scr. 76, 336 (2007)

    ADS  Google Scholar 

  21. J.K. Hwang et al., J. Phys. G 28, L9 (2002)

    Google Scholar 

  22. N. Buforn et al., Eur. Phys. J. A 7, 347 (2000)

    ADS  Google Scholar 

  23. P. Verma, C. Sharma, S. Singh, A. Bharti, S.K. Khosa, Nucl. Phys. A 884-885, 1 (2012)

    ADS  Google Scholar 

  24. A. Gupta, P. Verma, S. Singh, A. Bharti, S.K. Khosa, G.H. Bhat, J.A. Sheikh, Nucl. Phys. A 941, 48 (2015)

    ADS  Google Scholar 

  25. A. Gupta, S. Singh, A. Bharti, S.K. Khosa, G.H. Bhat, J.A. Sheikh, Eur. Phys. J. A 53, 15 (2017)

    ADS  Google Scholar 

  26. P. Verma, C. Sharma, S. Singh, A. Bharti, S.K. Khosa, G.H. Bhat, J.A. Sheikh, Nucl. Phys. A 918, 1 (2013)

    ADS  Google Scholar 

  27. D. Singh, A. Bharti, A. Kumar, S. Singh, G.H. Bhat, J.A. Sheikh, Int. J. Mod. Phys. E 26, 1750041 (2017)

    ADS  Google Scholar 

  28. Suram Singh, Amit Kumar, Surbhi Gupta, Arun Bharti, G.H. Bhat, J.A. Sheikh, Eur. Phys. J. Plus 133, 472 (2018)

    Google Scholar 

  29. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980)

    Google Scholar 

  30. J.-y. Zhang, A.J. Larabee, L.L. Reidinger, J. Phys. G 13, L75 (1987)

    Google Scholar 

  31. Y. Sun, J.-y. Zhang, M. Guidry, J. Meng, S. Im, Phys. Rev. C 62, 021601(R) (2000)

    ADS  Google Scholar 

  32. W. Dieterich, A. Bäcklin, C.O. Lannergård, I. Ragnarsson, Nucl. Phys. A 253, 429 (1975)

    ADS  Google Scholar 

  33. M. Anguiano, J.L. Egido, L.M. Robledo, Nucl. Phys. A 696, 467 (2001)

    ADS  Google Scholar 

  34. D. Lacroix, T. Duguet, M.M. Bender, Phys. Rev. C 79, 044318 (2009)

    ADS  Google Scholar 

  35. R. Chaudhary, Rakesh K. Pandita, Rani Devi, S.K. Khosa, Nucl. Phys. A 970, 44 (2018)

    ADS  Google Scholar 

  36. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 1990)

    Google Scholar 

  37. N. Fotiades et al., Phys. Rev. C 61, 064326 (2000)

    ADS  Google Scholar 

  38. J. Hwang et al., J. Phys. G 28, L9 (2002)

    Google Scholar 

  39. J. Blachot, Nucl. Data Sheets 110, 1239 (2009)

    ADS  Google Scholar 

  40. J. Blachot, Nucl. Data Sheets 111, 1471 (2010)

    ADS  Google Scholar 

  41. J. Blachot, Nucl. Data Sheets 113, 2391 (2012)

    ADS  Google Scholar 

  42. M. Rejmund et al., Phys. Rev. C 93, 024312 (2016)

    ADS  Google Scholar 

  43. A. Hashizume, Nucl. Data Sheets 112, 1647 (2011)

    ADS  Google Scholar 

  44. S.K. Sharma, K.H. Bhatt, Phys. Lett. B 36, 550 (1971)

    ADS  Google Scholar 

  45. S.K. Sharma, K.H. Bhatt, Nucl. Phys. A 192, 625 (1972)

    ADS  Google Scholar 

  46. S.K. Khosa, S.K. Sharma, Phys. Rev. C 24, 2715 (1981)

    ADS  Google Scholar 

  47. J.H. Hamilton, A.V. Ramayya, S.J. Zhu, G.M. Ter-Akopian, Yu.Ts. Oganessian, J.D. Cole, J.O. Rasmussen, M.A. Stoyer, Prog. Part. Nucl. Phys. 35, 635 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suram Singh.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Singh, S., Bharti, A. et al. Microscopic insight into low level systematics and negative-parity yrast bands in odd-mass \(\mathrm{{}^{ 111\mbox{--}127}Cd}\). Eur. Phys. J. Plus 134, 520 (2019). https://doi.org/10.1140/epjp/i2019-12857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12857-9

Navigation