Skip to main content
Log in

Analysis of first integrals for some nonlinear differential equations via different approaches

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper begins with first integrals and Lagrangian forms of the Ermakov-Pinney equation. We analyze this equation with the methods which are known as Jacobi last multiplier (JLM) and partial Hamiltonian. The other part of the paper includes a class of the Painlevé-Gambier equations and describes the motion of a chain ball drawing with constant force in frictionless surface. The Painlevé-Gambier equation is investigated through the following methods: \( \lambda\) -symmetry, Prelle-Singer and partial Hamiltonian. Some of the aforementioned methods have relationships with Lie point symmetries. The first, JLM method, enables us to derive first integrals and Lagrangian forms of ordinary differential equations (ODEs) via Lie point symmetries. The second one is the \( \lambda\) -symmetry method, which is very useful in finding first integrals and integrating factors of ODEs. One way to obtain \( \lambda\) -symmetries is to use Lie point symmetries. Another method, introduced by Naz et al. in 2014 focuses on the partial Hamiltonian systems and is applicable to many problems in various fields, such as applied mathematics, mechanics and economics. Lastly the Prelle-Singer (PS) method has a relation between the \( \lambda\) -symmetry method and null forms, and integrating factors of ODEs can be derived with this connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, 1993)

  2. G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer-Verlag, New York, 1989)

  3. M.C. Nucci, J. Nonlinear Math. Phys. 12, 284 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.C. Nucci, Theor. Math. Phys. 160, 1014 (2009)

    Article  Google Scholar 

  5. M.C. Nucci, P.G.L. Leach, J. Math. Phys. 48, 123510 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. M.C. Nucci, P.G.L. Leach, J. Nonlinear Math. Phys. 16, 431 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.C. Nucci, K.M. Tamizhmani, Nuovo Cimento B 125, 255 (2010)

    Google Scholar 

  8. C. Muriel, J.L. Romero, IMA J. Appl. Math. 66, 111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Muriel, J.L. Romero, J. Phys. A 42, 365207 (2009)

    Article  MathSciNet  Google Scholar 

  10. Wen-Xiu Ma, Nonlinear Anal. 71, e1716 (2009)

    Article  Google Scholar 

  11. V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, J. Math. Phys. 12, 184 (2005)

    Google Scholar 

  12. V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Proc. R. Soc. London Ser. A 461, 2451 (2005)

    Article  ADS  Google Scholar 

  13. R. Mohanasubha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Proc. R. Soc. A 470, 20130656 (2014)

    Article  ADS  Google Scholar 

  14. R. Naz, F.M. Mahomed, A. Chaudhry, Commun. Nonlinear Sci. Numer. Simul. 19, 3600 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Naz, F.M. Mahomed, A. Chaudhry, Nonlinear Dyn. 84, 1783 (2016)

    Article  Google Scholar 

  16. R. Naz, Int. J. Non-Linear Mech. 86, 1 (2016)

    Article  ADS  Google Scholar 

  17. R. Naz, F.M. Mahomed, A. Chaudhry, Commun. Nonlinear Sci. Numer. Simul. 30, 299 (2016)

    Article  MathSciNet  Google Scholar 

  18. K.S. Mahomed, R.J. Moitsheki, Int. J. Mod. Phys. B 30, 1640019 (2016)

    Article  ADS  Google Scholar 

  19. B.U. Haq, I. Naeem, Nonlinear Dyn. 95, 1747 (2019)

    Article  Google Scholar 

  20. R. Naz, I. Naeem, Z. Naturforsch. A 73, 323 (2018)

    Article  ADS  Google Scholar 

  21. V. Ermakov, Appl. Anal. Discr. Math. 2, 123 (2008)

    Article  Google Scholar 

  22. E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950)

    Google Scholar 

  23. M.C. Nucci, P.G.L. Leach, J. Nonlinear Math. Phys. 12, 305 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.M. Morris, P.G.L. Leach, Appl. Anal. Discr. Math. 11, 62 (2017)

    Article  Google Scholar 

  25. Ö. Orhan, T. Özer, AIMS Discr. Contin. Dyn. Syst. Ser. S 11, 735 (2018)

    Google Scholar 

  26. E. Yaşar, M. Reis, J. Phys. A 43, 295202 (2010)

    Article  MathSciNet  Google Scholar 

  27. E. Yaşar, Math. Methods Appl. Sci. 35, 684 (2012)

    MathSciNet  Google Scholar 

  28. G. Gün Polat, T. Özer, Nonlinear Dyn. 85, 1571 (2016)

    Article  Google Scholar 

  29. G. Gün Polat, T. Özer, J. Comput. Nonlinear Dyn. 12, 041001 (2017)

    Article  Google Scholar 

  30. Wen-Xiu Ma, Y. Zhou, J. Differ. Equ. 264, 2633 (2018)

    Article  ADS  Google Scholar 

  31. Wen-Xiu Ma, J. Li, C.M. Khalique, Complexity 2018, 9059858 (2018)

    Google Scholar 

  32. Wen-Xiu Ma, J. Appl. Anal. Comput. 264, 2633 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülden Gün Polat.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gün Polat, G. Analysis of first integrals for some nonlinear differential equations via different approaches. Eur. Phys. J. Plus 134, 389 (2019). https://doi.org/10.1140/epjp/i2019-12774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12774-y

Navigation