Skip to main content
Log in

An elementary canonical classical and quantum dynamics for general relativity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A consistent (off-shell) canonical classical and quantum dynamics in the framework of special relativity was formulated by Stueckelberg in 1941, and generalized to many-body theory by Horwitz and Piron in 1973 (SHP). In this paper, this theory is embedded into the framework of general relativity (GR), here denoted by SHPGR. The canonical Poisson brackets of the SHP theory remain valid (invariant under local coordinate transformations) on the manifold of GR, and provide the basis for formulating a canonical quantum theory. A scalar product is defined for constructing the Hilbert space and a Hermitian momentum operator defined. The Fourier transform is defined, connecting momentum and coordinate representations. The potential which may occur in the SHP theory emerges as a spacetime scalar mass distribution in GR, and electromagnetism corresponds to a gauge field on the quantum mechanical SHPGR Hilbert space in both the single particle and many-body theory. A diffeomorphism covariant form of Newton’s law is found as an immediate consequence of the canonical formulation of SHPGR. We compute the classical evolution of the off shell mass on the orbit of a particle and the force on a particle and its energy at the Schwarzschild horizon. The propagator for evolution of the one-body quantum state is studied and a scattering theory on the manifold is worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawrence Horwitz, Relativistic Quantum Mechanics, in Fundamental Theories of Physics, Vol. 180 (Springer, Dordrecht, 2015)

  2. E.C.G. Stueckelberg, Helv. Phys. Acta 14, 372 (1941)

    MathSciNet  Google Scholar 

  3. E.C.G. Stueckelberg, Helv. Phys. Acta 14, 585 (1941)

    MathSciNet  Google Scholar 

  4. E.C.G. Stueckelberg, Helv. Phys. Acta 15, 23 (1942)

    ADS  MathSciNet  Google Scholar 

  5. L.P. Horwitz, C. Piron, Helv. Phys. Acta 66, 316 (1973)

    Google Scholar 

  6. R.E. Collins, J.R. Fanchi, Nuovo Cimento A 48, 314 (1978)

    Article  ADS  Google Scholar 

  7. J.R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer, Dordrecht, 1993)

  8. Isaac Newton, Philosophia Naturalis Principia Mathematica (London, 1687)

  9. I.B. Cohen, A. Whitman The Principia: Mathematical Principles of Natural Philosophy: A New Translation (University of California Press, Berkeley, 1999)

  10. R.I. Arshansky, L.P. Horwitz, J. Math. Phys. 30, 66 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.I. Arshansky, L.P. Horwitz, J. Math. Phys. 30, 380 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. R.I. Arshansky, L.P. Horwitz, J. Math. Phys. 30, 213 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Schwinger, Phys. Rev. 73, 416 (1948)

    Article  ADS  Google Scholar 

  14. J. Schwinger, Phys. Rev. 74, 1439 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Tomonaga, Phys. Rev. 74, 224 (1948)

    Article  ADS  Google Scholar 

  16. N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Plante, P. Vanhove, arXiv:1806.04920 [hep-th] (2018)

  17. T. Damour, Phys. Rev. D 98, 104015 (2018)

    Article  MathSciNet  Google Scholar 

  18. T. Damour, Phys. Rev. D 97, 044038 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. L.P. Horwitz, A. Gershon, M. Schiffer, Found. Phys. 41, 141 (2010)

    Article  ADS  Google Scholar 

  20. A. Gershon, L.P. Horwitz, J. Math. Phys. 50, 102704 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.D. Bekenstein, R.H. Sanders, Astrophys. J. 429, 480 (1994)

    Article  ADS  Google Scholar 

  22. J.D. Bekenstein, M. Milgrom, Astrophys. J. 286, 7 (1984)

    Article  ADS  Google Scholar 

  23. J.D. Bekenstein, Phys. Rev. D 70, 083509 (2004)

    Article  ADS  Google Scholar 

  24. J.D. Bekenstein, Contemp. Phys. 47, 387 (2006) for a review, references, and further development

    Article  ADS  Google Scholar 

  25. M. Milgrom, Asrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  26. M. Milgrom, Asrophys. J. 270, 371 (1983)

    Article  ADS  Google Scholar 

  27. M. Milgrom, Asrophys. J. 270, 384 (1983)

    Article  ADS  Google Scholar 

  28. N.B. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, in Cambrdge Monographs on Mathematical Physics (Cambridge, 1982)

  29. E. Poisson, A Relativist’s Toolkit, (Cambridge, 2004)

  30. Ana Cannas de Silva, Lectures on Symplectic Geometry, in Lecture Notes in Mathematics, Vol. 1764 (Springer, 2006)

  31. P.A.M. Dirac, Quantum Mechanics, 1st edition (Oxford University Press, London, 1930) 3rd edition (1947)

  32. L. Van Hove, Proc. R. Aca. Belgium 26, 1 (1951)

    Google Scholar 

  33. H.J. Groenwold, Physica 12, 405 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  34. L.P. Horwitz, Y. Ben Zion, M. Lewkowicz, M. Schiffer, J.Levitan, Phys. Rev. Lett. 98, 234301 (2007)

    Article  ADS  Google Scholar 

  35. M.D. Kruskal, Phys. Rev. 119, 1743 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Schwarzschild, Sitzungsber. K. Preuss. Akad. Einsteinschen Theorie 1, 424 (1916)

    Google Scholar 

  37. P.A.M. Dirac, General Theory of Relativity (Wiley, New York, 1975)

  38. S. Hawking, Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  39. D. Ludwin, L.P. Horwitz, J. Math. Phys. 52, 012303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Momemi, Phys. Lett. A 383, 1543 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Friedman, Z. Phys. A 21, 326 (1924)

    Article  Google Scholar 

  42. G. Lemaitre, Mon. Not. R. Astron. Soc. 91, 483 (1931) (translated from Ann. Soc. Sci. Bruxelles A 47

    Article  ADS  Google Scholar 

  43. G. Lemaitre, Ann. Soc. Sci. Bruxelles A 53, 51 (1933)

    Google Scholar 

  44. H.P. Robertson, Astrophys. J. 82, 284 (1935)

    Article  ADS  Google Scholar 

  45. H.P. Robertson, Astrophys. J. 83, 187 (1936)

    Article  ADS  Google Scholar 

  46. H.P. Robertson, Astrophys. J. 83, 257 (1936)

    Article  ADS  Google Scholar 

  47. A.G. Walker, Proc. London Math. Soc. 42, 90 (1936)

    ADS  MathSciNet  Google Scholar 

  48. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  49. B.S. DeWitt, Phys. Rep. 19, 295 (1975)

    Article  ADS  Google Scholar 

  50. B.S. DeWitt, The Global Approach to Quantum Field Theory (Oxford University Press, Oxford, 2002)

  51. S.S. Schweber, An Introduction to Quantum Field Theory (Harper and Row, New York, 1964) pp. 419, 420

  52. T.D. Newton, E. Wigner, Rev. Mod. Phys. 21, 400 (1949)

    Article  ADS  Google Scholar 

  53. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

    Article  ADS  Google Scholar 

  54. R.P. Feynman, Phys. Rev. 76, 749 (1949)

    Article  ADS  Google Scholar 

  55. R.P. Feynman, Phys. Rev. 76, 769 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 37, 452 (1951)

    Article  ADS  Google Scholar 

  57. S. Helgason, Groups and Geometric Analysis, Academic Press (New York, 1984)

  58. C.N. Yang, Ann. New York Acad. Sci. 294, 86 (1977)

    Article  ADS  Google Scholar 

  59. D. Saad, L.P. Horwitz, R.I. Arshansky, Found. Phys. 19, 1125 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  60. M.C. Land, N. Shnerb, L.P. Horwitz, J. Math. Phys. 36, 3263 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  61. J.D. Jackson, Classical Electrodynamics, 2nd edition (John Wiley and Sons, New York, 1974)

  62. S.A. Hojman, L.C. Sheply, J. Math. Phys. 32, 142 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Tanimura, Ann. Phys. 220, 229 (1992)

    Article  ADS  Google Scholar 

  64. S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, New York, 1972)

  65. M. Land, J. Phys. Conf. Ser. 845, 012024 (2017)

    Article  Google Scholar 

  66. L.P. Horwitz, W.C. Schieve, C. Piron, Ann. Phys. 137, 306 (1981)

    Article  ADS  Google Scholar 

  67. L.P. Horwitz, S. Shashoua, W.C. Schieve, Physica A 161, 300 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  68. Lawrence P. Horwitz, Rafael I. Arshansky, Relativistic Many-Body Theory and Statistical Mechanics, in IOP Concise Physics (A. Morgan and Claypool, Bristol, 2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Horwitz.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horwitz, L.P. An elementary canonical classical and quantum dynamics for general relativity. Eur. Phys. J. Plus 134, 313 (2019). https://doi.org/10.1140/epjp/i2019-12689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12689-7

Navigation