Skip to main content
Log in

The generalized Brans-Dicke theory and its cosmology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The generalized Brans-Dicke (GBD) theory is studied in this paper. The GBD theory is obtained by generalizing the Ricci scalar R to an arbitrary function f (R) in the original Brans-Dicke (BD) action. An interesting property was found in the GBD theory, for example, it can naturally solve the problem of the \( \gamma\) value emerging in f (R) modified gravity (i.e. the inconsistent problem between the observational \( \gamma\) value and the theoretical \( \gamma\) value), without introducing the so-called chameleon mechanism. In this paper, we derive the cosmological equations and study the cosmology in the GBD theory. The cosmological solutions show that the GBD model can pass through the test of the observations, such as the observational Hubble data. Compared with other theories, it can be found that the GBD theory has some other interesting properties or solve some problems existing in other theories. 1) It is well known that the f (R) theory is equivalent to the BD theory with a potential (abbreviated as BDV) for taking a specific value of the BD parameter \( \omega\) = 0 , where the specific choice \( \omega\) = 0 for the BD parameter is quite exceptional, and it is hard to understand the corresponding absence of the kinetic term for the field. However, for the GBD theory, it is similar to the coupled scalar field model, where both fields in the GBD theory have the non-disappeared dynamical effect. 2) One knows that in the coupled scalar field quintom model, it is required to include both the canonical quintessence field and the non-canonical phantom field, in order to make the state parameter cross over w = - 1 , while several fundamental problems are associated with the phantom field, such as the problem of negative kinetic term, the fine-tuning problem, etc. On the other hand, in the GBD model, the state parameter of geometrical dark energy can cross over the phantom boundary w = - 1 as in the quintom model, without bearing the problems existing in the quintom model. 3) The GBD theory tends to investigate the physics from the viewpoint of geometry, while the BDV, or the two scalar fields quintom model tend to solve physical problems from the viewpoint of matter. It is possible that several special characteristics of scalar fields could be revealed through studies of geometrical gravity in the GBD theory. As an example, we investigate the potential V(\( \phi\)) of the BD scalar field, and an effective form of V(\( \phi\)) could be given by studying the GBD theory. Moreover, it seems that a viable condition for the BD theory could be found, i.e. the BD parameter should be \( \omega\) > 0 for f > 0 , if we assume that the effective form of the BD potential can be approximately written as a popular square function of \( \phi\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lu, G. Chee, JHEP 05, 024 (2016)

    Article  ADS  Google Scholar 

  2. Q.G. Huang, Eur. Phys. J. C 74, 2964 (2014) arXiv:1403.0655

    Article  ADS  Google Scholar 

  3. M. Hohmann, L. Jarv, P. Kuusk, E. Randla, O. Vilson, Phys. Rev. D 94, 124015 (2016) arXiv:1607.02356

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017) arXiv:1705.11098

    Article  ADS  MathSciNet  Google Scholar 

  5. A. de la Cruz-Dombriz, E. Elizalde, S.D. Odintsov, D. Saez-Gomez, JCAP 05, 060 (2016) arXiv:1603.05537

    Article  ADS  Google Scholar 

  6. T.P. Sotiriou, Class. Quantum Grav. 23, 5117 (2006)

    Article  ADS  Google Scholar 

  7. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  8. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010) arXiv:0805.1726

    Article  ADS  Google Scholar 

  9. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Biesiada, B. Malec, Mon. Not. R. Astron. Soc. 350, 644 (2004) astro-ph/0303489

    Article  ADS  Google Scholar 

  11. O.G. Benvenuto et al., Phys. Rev. D 69, 082002 (2004)

    Article  ADS  Google Scholar 

  12. J.P.W. Verbiest et al., Astrophys. J. 679, 675 (2008) arXiv:0801.2589

    Article  ADS  Google Scholar 

  13. E. Gaztanaga et al., Phys. Rev. D 65, 023506 (2002) arXiv:astro-ph/0109299

    Article  ADS  Google Scholar 

  14. S.E. Thorsett, Phys. Rev. Lett. 77, 1432 (1996) astro-ph/9607003

    Article  ADS  Google Scholar 

  15. K. Bamba, D. Momeni, R. Myrzakulov, Int. J. Geom. Methods Mod. Phys. 12, 1550106 (2015) arXiv:1404.4255

    Article  MathSciNet  Google Scholar 

  16. L. Qiang, Y. Ma, M. Han, D. Yu, Phys. Rev. D 71, 061501 (2005)

    Article  ADS  Google Scholar 

  17. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  18. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  19. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  20. L.X. Xu, W.B. Li, J.B. Lu, Eur. Phys. J. C 60, 135 (2009)

    Article  ADS  Google Scholar 

  21. N. Banerjee, D. Pavon, Phys. Rev. D 63, 043504 (2001)

    Article  ADS  Google Scholar 

  22. A.D. Felice, S. Tsujikawa, JCAP 07, 024 (2010)

    Article  Google Scholar 

  23. J. Lu, S. Gao, Y. Zhao, Y. Wu, Eur. Phys. J. Plus 127, 154 (2012)

    Article  Google Scholar 

  24. N. Roy, N. Banerjee, Phys. Rev. D 95, 064048 (2017) arXiv:1702.02169

    Article  ADS  MathSciNet  Google Scholar 

  25. L.X. Xu, W.B. Li, J.B. Lu, Eur. Phys. J. C 60, 135 (2009)

    Article  ADS  Google Scholar 

  26. O. Hrycyna, M. Szydlowski, JCAP 12, 016 (2013) arXiv:1310.1961

    Article  ADS  Google Scholar 

  27. H. Ozer, O. Delice, Class. Quantum Grav. 35, 065002 (2018) arXiv:1708.05900

    Article  ADS  Google Scholar 

  28. R.C. Freitas, S.V.B. Goncalves, Phys. Lett. B 703, 209 (2011) arXiv:1111.5045

    Article  ADS  Google Scholar 

  29. X. Zhang, J. Yu, T. Liu, W. Zhao, A. Wang, Phys. Rev. D 95, 124008 (2017) arXiv:1703.09853

    Article  ADS  MathSciNet  Google Scholar 

  30. S.K. Tripathy, D. Behera, B. Mishra, Eur. Phys. J. C 75, 149 (2015) arXiv:1410.3156

    Article  ADS  Google Scholar 

  31. G. Papagiannopoulos, J.D. Barrow, S. Basilakos, A. Giacomini, A. Paliathanasis, Phys. Rev. D 95, 024021 (2017) arXiv:1611.00667

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Sharif, Rubab Manzoor, Eur. Phys. J. C 76, 330 (2016) arXiv:1606.00758

    Article  ADS  Google Scholar 

  33. J. Lu, Y. Wang, arXiv:1904.01734

  34. J.C. Hwang, Class. Quantum Grav. 7, 1613 (1990)

    Article  ADS  Google Scholar 

  35. J.C. Hwang, H. Noh, Phys. Rev. D 54, 1460 (1996)

    Article  ADS  Google Scholar 

  36. J.C. Hwang, H. Noh, Phys. Rev. D 71, 063536 (2005)

    Article  ADS  Google Scholar 

  37. S.D. Odintsov, V.K. Oikonomou, Nucl. Phys. B 929, 79 (2018) arXiv:1801.10529

    Article  ADS  Google Scholar 

  38. Y. Huang, Y. Gong, D. Liang, Z. Yi, Eur. Phys. J. C 75, 351 (2015) arXiv:1504.01271

    Article  ADS  Google Scholar 

  39. B. Boisseau, Phys. Rev. D 83, 043521 (2011) arXiv:1011.2915

    Article  ADS  Google Scholar 

  40. B. Boisseau, H. Giacomini, D. Polarski, A.A. Starobinsky, JCAP 07, 002 (2015) arXiv:1504.07927

    Article  ADS  Google Scholar 

  41. T. Chiba, M. Yamaguchi, JCAP 10, 040 (2013) arXiv:1308.1142

    Article  ADS  Google Scholar 

  42. D.B. Guenther, L.M. Krauss, P. Demarque, Astrophys. J. 498, 871 (1998)

    Article  ADS  Google Scholar 

  43. J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93, 261101 (2004) arXiv:gr-qc/0411113

    Article  ADS  Google Scholar 

  44. A.G. Riess et al., Astrophys. J. 699, 539 (2009) arXiv:0905.0695

    Article  ADS  Google Scholar 

  45. P. Zhang, M. Liguori, R. Bean, S. Dodelson, Phys. Rev. Lett. 99, 141302 (2007) arXiv:0704.1932

    Article  ADS  Google Scholar 

  46. E.V. Linder, Phys. Rev. D 80, 123528 (2009) arXiv:0905.2962

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Bamba, C.G. Geng, C.C. Lee, JCAP 08, 021 (2010) arXiv:1005.4574

    Article  ADS  Google Scholar 

  48. C. Zhang, H. Zhang, S. Yuan, S. Liu, T.J. Zhang, Y.C. Sun, Res. Astron. Astrophys. 14, 1221 (2014) arXiv:1207.4541

    Article  ADS  Google Scholar 

  49. R. Jimenez, L. Verde, T. Treu, D. Stern, Astrophys. J. 593, 622 (2003) arXiv:0302560

    Article  ADS  Google Scholar 

  50. J. Simon, L. Verde, R. Jimenez, Gravit. Cosmol. 71, 123001 (2005) arXiv:0412269

    Google Scholar 

  51. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, JCAP 07, 53 (2012) arXiv:1201.6658

    Article  ADS  Google Scholar 

  52. E. Gaztanaga, A. Cabrse, L. Hui, arXiv:0807.3551

  53. X. Xu, A.J. Cuesta, N. Padmanabhan, D.J. Eisenstein, C.K. McBride, Mon. Not. R. Astron. Soc. 431, 2834 (2013) arXiv:1206.6732

    Article  ADS  Google Scholar 

  54. M. Moresco, L. Pozzetti, A. Cimatti et al., JCAP 5, 014 (2016) arXiv:1601.01701

    Article  ADS  Google Scholar 

  55. C. Blake, S. Brough, M. Colless et al., Mon. Not. R. Astron. Soc. 425, 405 (2012) arXiv:1204.3674

    Article  ADS  Google Scholar 

  56. D. Stern, R. Jimenez, L. Verde et al., J. Cosmol. Astropart. Phys. 2, 8 (2010) arXiv:0907.3149

    Article  ADS  Google Scholar 

  57. L. Samushia, B.A. Reid, M. White et al., Mon. Not. R. Astron. Soc. 429, 1514 (2013) arXiv:1206.5309

    Article  ADS  Google Scholar 

  58. M. Moresco, Mon. Not. R. Astron. Soc. Lett. 450, L16 (2015) arXiv:1503.01116

    Article  ADS  Google Scholar 

  59. R.G. Cai, S.J. Wang, Phys. Rev. D 93, 023515 (2016) arXiv:1511.00627

    Article  ADS  Google Scholar 

  60. J.J. Guo, J.F. Zhang, Y.H. Li, D.Z. He, X. Zhang, Sci. China-Phys. Mech. Astron. 61, 030011 (2018) arXiv:1710.03068

    Article  ADS  Google Scholar 

  61. T. Yang, Z.K. Guo, R.G. Cai, Phys. Rev. D 91, 123533 (2015) arXiv:1505.04443

    Article  ADS  Google Scholar 

  62. H. Wei, X.B. Zou, H.Y. Li, D.Z. Xue, Eur. Phys. J. C 77, 14 (2017) arXiv:1605.04571

    Article  ADS  Google Scholar 

  63. Q.G. Huang, Eur. Phys. J. C 74, 2964 (2014) arXiv:1403.0655

    Article  ADS  Google Scholar 

  64. Y. Fan, P.X. Wu, H.W. Yu, Phys. Rev. D 92, 083529 (2015) arXiv:1510.04010

    Article  ADS  Google Scholar 

  65. X. Zhang, Sci. China-Phys. Mech. Astron. 60, 060431 (2017) arXiv:1703.00651

    Article  ADS  Google Scholar 

  66. L.X. Xu, Phys. Rev. D 87, 043503 (2013) arXiv:1210.7413

    Article  ADS  Google Scholar 

  67. S. Li, Y.G. Ma, Eur. Phys. J. C 68, 227 (2010) arXiv:1004.4350

    Article  ADS  Google Scholar 

  68. L. Feng, J.F. Zhang, X. Zhang, Sci. China-Phys. Mech. Astron. 61, 050411 (2018) arXiv:1706.06913

    Article  ADS  Google Scholar 

  69. L.X. Xu, Phys. Rev. D 87, 043525 (2013) arXiv:1302.2291

    Article  ADS  Google Scholar 

  70. J.B. Lu, G.Y. Chee, JHEP 05, 024 (2016)

    Article  ADS  Google Scholar 

  71. M. Hohmann, L. Jarv, P. Kuusk, E. Randla, O. Vilson, Phys. Rev. D 94, 124015 (2016) arXiv:1607.02356

    Article  ADS  MathSciNet  Google Scholar 

  72. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017) arXiv:1705.11098

    Article  ADS  MathSciNet  Google Scholar 

  73. A. de la Cruz-Dombriz, E. Elizalde, S.D. Odintsov, D. Saez-Gomez, JCAP 05, 060 (2016) arXiv:1603.05537

    Article  ADS  Google Scholar 

  74. J. Lu, D. Geng, L. Xu, Y. Wu, M. Liu, JHEP 02, 071 (2015) arXiv:1312.0779

    Article  ADS  Google Scholar 

  75. J. Lu, M. Liu, Y. Wu, Y. Wang, W. Yang, Eur. Phys. J. C 76, 679 (2016) arXiv:1606.02987

    Article  ADS  Google Scholar 

  76. B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005) arXiv:astro-ph/0404224

    Article  ADS  Google Scholar 

  77. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  78. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  79. S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669, 255 (2008) arXiv:0812.2272

    Article  ADS  Google Scholar 

  80. C. Corda, Eur. Phys. J. C 65, 257 (2010) arXiv:1007.4077

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Lu.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wu, Y., Yang, W. et al. The generalized Brans-Dicke theory and its cosmology. Eur. Phys. J. Plus 134, 318 (2019). https://doi.org/10.1140/epjp/i2019-12684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12684-0

Navigation