Skip to main content
Log in

Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The important effect of porosity on the mechanical behaviors of a continuum, makes it necessary to be accounted for while analyzing the structure. Motivated by this fact, a new porosity-dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) nanobeams by considering the coupling effects between density and Young’s moduli in porous materials. In the introduced homogenization method, which is a modified form of the power-law model, dependency of effective Young’s modulus to the mass density is covered. Based on the Hamilton principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adopted to emphasize the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ebrahimi, A. Rastgoo, Thin-Walled Struct. 46, 1402 (2008)

    Article  Google Scholar 

  2. H.-S. Shen, Compos. Struct. 91, 375 (2009)

    Article  Google Scholar 

  3. Y. Huang, X.-F. Li, J. Sound Vib. 329, 2291 (2010)

    Article  ADS  Google Scholar 

  4. A.E. Alshorbagy, M. Eltaher, F. Mahmoud, Appl. Math. Model. 35, 412 (2011)

    Article  MathSciNet  Google Scholar 

  5. M. Simşek, T. Kocatürk, S. Akbaş, Compos. Struct. 94, 2358 (2012)

    Article  Google Scholar 

  6. F. Ebrahimi, Mech. Adv. Mater. Struct. 20, 854 (2013)

    Article  Google Scholar 

  7. S. Ghiasian et al., Int. J. Mech. Sci. 81, 137 (2014)

    Article  Google Scholar 

  8. M. Simşek, Compos. Struct. 133, 968 (2015)

    Article  Google Scholar 

  9. M. Gharibi, M. Zamani Nejad, A. Hadi, J. Comput. Appl. Mech. 48, 89 (2017)

    Google Scholar 

  10. Y. Tang, T. Yang, Compos. Struct. 185, 393 (2018)

    Article  Google Scholar 

  11. N. Wattanasakulpong, V. Ungbhakorn, Aerospace Sci. Technol. 32, 111 (2014)

    Article  Google Scholar 

  12. A. Mojahedin et al., Thin-Walled Struct. 99, 83 (2016)

    Article  Google Scholar 

  13. D. Chen, S. Kitipornchai, J. Yang, Thin-Walled Struct. 107, 39 (2016)

    Article  Google Scholar 

  14. A. Rezaei, A. Saidi, Compos. Part B: Eng. 91, 361 (2016)

    Article  Google Scholar 

  15. Y. Wang, D. Wu, Aerospace Sci. Technol. 66, 83 (2017)

    Article  Google Scholar 

  16. H.A. Atmane, A. Tounsi, F. Bernard, Int. J. Mech. Mater. Design 13, 71 (2017)

    Article  Google Scholar 

  17. A.M. Zenkour, Compos. Struct. 201, 38 (2018)

    Article  Google Scholar 

  18. A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)

    Article  Google Scholar 

  19. S. Pradhan, T. Murmu, Physica E 42, 1293 (2010)

    Article  ADS  Google Scholar 

  20. R. Ansari, B. Arash, H. Rouhi, Compos. Struct. 93, 2419 (2011)

    Article  Google Scholar 

  21. F. Mahmoud et al., J. Mech. Sci. Technol. 26, 3555 (2012)

    Article  Google Scholar 

  22. M. Eltaher, A.E. Alshorbagy, F. Mahmoud, Appl. Math. Model. 37, 4787 (2013)

    Article  MathSciNet  Google Scholar 

  23. F. Ebrahimi, E. Salari, J. Mech. Sci. Technol. 29, 3797 (2015)

    Article  Google Scholar 

  24. A.M. Zenkour, Physica E 79, 87 (2016)

    Article  ADS  Google Scholar 

  25. A. Ghorbanpour Arani et al., Proc. Inst. Mech. Eng. Part C 231, 387 (2017)

    Article  Google Scholar 

  26. M. Farajpour, Mech. Adv. Mater. Struct. (2018) https://doi.org/10.1080/15376494.2018.1432820

  27. M. Hosseini et al., J. Comput. Appl. Mech. 49, 197 (2018)

    Google Scholar 

  28. M. Eltaher, S.A. Emam, F. Mahmoud, Appl. Math. Comput. 218, 7406 (2012)

    MathSciNet  Google Scholar 

  29. S. Natarajan et al., Comput. Mater. Sci. 65, 74 (2012)

    Article  Google Scholar 

  30. O. Rahmani, O. Pedram, Int. J. Eng. Sci. 77, 55 (2014)

    Article  Google Scholar 

  31. R. Nazemnezhad, S. Hosseini-Hashemi, Compos. Struct. 110, 192 (2014)

    Article  Google Scholar 

  32. F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)

    Article  Google Scholar 

  33. M. Zamani Nejad, A. Hadi, A. Rastgoo, Int. J. Eng. Sci. 103, 1 (2016)

    Article  Google Scholar 

  34. F. Ebrahimi, M.R. Barati, P. Haghi, J. Vib. Control (2017) https://doi.org/1077546317711537

  35. S. Srividhya et al., Int. J. Eng. Sci. 125, 1 (2018)

    Article  MathSciNet  Google Scholar 

  36. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)

    Article  Google Scholar 

  37. M.R. Barati, Int. J. Eng. Sci. 116, 1 (2017)

    Article  Google Scholar 

  38. F.W. Zok, C.G. Levi, Adv. Eng. Mater. 3, 15 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Dabbagh, A. Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme. Eur. Phys. J. Plus 134, 157 (2019). https://doi.org/10.1140/epjp/i2019-12510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12510-9

Navigation