Skip to main content
Log in

Guidelines for the evaluation of magnetotransport parameters from measurements on thin strip-shaped samples of bulk metallic ferromagnets with finite residual resistivity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present paper, the formulae are summarized for the evaluation of magnetoresistance data from the measured field dependence of the resistivity obtained on thin strip-shaped samples of ferromagnetic metals and alloys with a finite residual resistivity for various relative orientations of the magnetic field and the measuring current. This sample shape simplifies the problem in that the specimen shape can be approximated with a general ellipsoid for which the demagnetizing fields can be estimated with sufficient accuracy from tabulated data. First, the various experimental configurations are defined for the magnetotransport measurements. Then, the formulae for describing the field-dependence of the resistivity in metallic ferromagnets with finite residual resistivity are discussed, by treating separately the case of low and high temperatures, low and high being defined with respect to the Curie temperature of the ferromagnet under study. The extraction of some magnetotransport parameters (anisotropic magnetoresistance and Hall effect) often requires an extrapolation of the measured data to zero magnetic field or zero magnetic induction and this will also be discussed. Finally, a summary of the relations between the experimentally measured magnetotransport parameters and those derived from theoretical calculations will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fawcett, Adv. Phys. 13, 139 (1964)

    Article  ADS  Google Scholar 

  2. C.M. Hurd, Adv. Phys. 23, 315 (1974)

    Article  ADS  Google Scholar 

  3. R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951)

  4. T.R. McGuire, R.I. Potter, IEEE Trans. Magn. 11, 1018 (1975)

    Article  ADS  Google Scholar 

  5. I.A. Campbell, A. Fert, Transport Properties of Ferromagnets, in Ferromagnetic Materials, edited by E.P. Wohlfarth, Vol. 3 (North-Holland, Amsterdam, 1982) Chapt. 9

  6. F.C. Schwerer, J. Silcox, J. Appl. Phys. 39, 2047 (1968)

    Article  ADS  Google Scholar 

  7. F.C. Schwerer, J. Silcox, Phys. Rev. B 1, 2391 (1970)

    Article  ADS  Google Scholar 

  8. I.A. Campbell, A. Fert, A.R. Pomeroy, Philos. Mag. 15, 977 (1967)

    Article  ADS  Google Scholar 

  9. R.C. O’Handley, Modern Magnetic Materials. Principles and Applications (Wiley-Interscience, New York, 2000)

  10. N.F. Mott, Proc. R. Soc. (London) A 153, 699 (1936)

    Article  ADS  Google Scholar 

  11. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  12. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  13. J.M. Daughton, J. Magn. & Magn. Mater. 192, 334 (1999)

    Article  ADS  Google Scholar 

  14. H. Ebert, A. Vernes, J. Banhart, Phys. Rev. B 54, 8479 (1996)

    Article  ADS  Google Scholar 

  15. J. Banhart, H. Ebert, A. Vernes, Phys. Rev. B 56, 10165 (1997)

    Article  ADS  Google Scholar 

  16. S. Khmelevskyi, K. Palotás, L. Szunyogh, P. Weinberger, Phys. Rev. B 68, 012402 (2003)

    Article  ADS  Google Scholar 

  17. S. Lowitzer, D. Ködderitzsch, H. Ebert, J.B. Staunton, Phys. Rev. B 79, 115109 (2009)

    Article  ADS  Google Scholar 

  18. J. Kudrnovsky, V. Drchal, S. Khmelevskyi, I. Turek, Phys. Rev. B 84, 214436 (2011)

    Article  ADS  Google Scholar 

  19. J. Kudrnovsky, V. Drchal, I. Turek, S. Khmelevskyi, J.K. Glasbrenner, K.D. Belashchenko, Phys. Rev. B 86, 144423 (2012)

    Article  ADS  Google Scholar 

  20. Y. Liu, Z. Yuan, R.J.H. Wesselink, A.A. Starikov, M. van Schilfgaarde, P.J. Kelly, Phys. Rev. B 91, 220405 (2015)

    Article  ADS  Google Scholar 

  21. A.A. Starikov, Y. Liu, Z. Yuan, P.J. Kelly, Phys. Rev. B 97, 214415 (2018)

    Article  ADS  Google Scholar 

  22. B.G. Tóth, L. Péter, Á. Révész, J. Pádár, I. Bakonyi, Eur. Phys. J. B 75, 167 (2010)

    Article  ADS  Google Scholar 

  23. O. Jaoul, I.A. Campbell, A. Fert, J. Magn. & Magn. Mater. 5, 23 (1977)

    Article  ADS  Google Scholar 

  24. J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960) Chapt. VI

  25. I. Bakonyi, E. Tóth-Kádár, J. Tóth, Á. Cziráki, B. Fogarassy, in Nanophase Materials, NATO ASI Series E, edited by G.C. Hadjipanayis, R.W. Siegel, Vol. 260 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. 423

  26. M.J. Aus, B. Szpunar, U. Erb, A.M. El-Sherik, G. Palumbo, K.T. Aust, J. Appl. Phys. 75, 3632 (1994)

    Article  ADS  Google Scholar 

  27. J.L. McCrea, K.T. Aust, G. Palumbo, U. Erb, MRS Symp. Proc. 581, 461 (2000)

    Article  Google Scholar 

  28. J.L. McCrea, PhD Thesis, University of Toronto, Toronto, Canada (2001)

  29. P.V.P. Madduri, S.N. Kaul, Phys. Rev. B 95, 184402 (2017)

    Article  ADS  Google Scholar 

  30. B. Raquet, M. Viret, J.M. Broto, E. Sondergard, O. Cespedes, R. Mamy, J. Appl. Phys. 91, 8129 (2002)

    Article  ADS  Google Scholar 

  31. B. Raquet, M. Viret, E. Sondergard, O. Cespedes, R. Mamy, Phys. Rev. B 66, 024433 (2002)

    Article  ADS  Google Scholar 

  32. J.A. Osborn, Phys. Rev. 67, 351 (1945)

    Article  ADS  Google Scholar 

  33. J. Ivkov, H.H. Liebermann, in Rapidly Quenched Metals, edited by S. Steeb, H. Warlimont (Elsevier Science Publishers B.V., Amsterdam, 1985) p. 1075

  34. See fig. A-1 “Common Hall bar geometries”, in Lake Shore 7500/9500 Series Hall System User’s Manual, Appendix A: Hall effects measurements, available at: https://doi.org/www.researchgate.net/file.PostFileLoader.html?id= 589e2361217e20a1470d36fd&assetKey=AS:460313729474561@1486758753270

  35. E.M. Pugh, N. Rostoker, Rev. Mod. Phys. 25, 151 (1953)

    Article  ADS  Google Scholar 

  36. C. Kooi, Phys. Rev. 95, 843 (1954)

    Article  ADS  Google Scholar 

  37. J.P. Jan, Helv. Phys. Acta 25, 677 (1952)

    Google Scholar 

  38. J.P. Jan, J.M. Gijsman, Physica 18, 339 (1952)

    Article  ADS  Google Scholar 

  39. J. Smit, Physica 21, 877 (1955)

    Article  ADS  Google Scholar 

  40. Y. Tian, L. Ye, X.F. Jin, Phys. Rev. Lett. 103, 087206 (2009)

    Article  ADS  Google Scholar 

  41. D.Z. Hou, Y.F. Li, D.H. Wei, D. Tian, L. Wu, X.F. Jin, J. Phys.: Condens. Matter 24, 482001 (2012)

    Google Scholar 

  42. R. Karplus, J.M. Luttinger, Phys. Rev. 95, 1154 (1954)

    Article  ADS  Google Scholar 

  43. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  44. N.A. Sinitsyn, J. Phys.: Condens. Matter 20, 023201 (2008)

    ADS  Google Scholar 

  45. W. Gil, D. Görlitz, M. Horisberger, J. Kötzler, Phys. Rev. B 72, 134401 (2005)

    Article  ADS  Google Scholar 

  46. B. Leven, G. Dumpich, Phys. Rev. B 71, 064411 (2005)

    Article  ADS  Google Scholar 

  47. U. Rüdiger, J. Yu, L. Thomas, S.S.P. Parkin, A.D. Kent, Phys. Rev. B 59, 11914 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bakonyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakonyi, I. Guidelines for the evaluation of magnetotransport parameters from measurements on thin strip-shaped samples of bulk metallic ferromagnets with finite residual resistivity. Eur. Phys. J. Plus 133, 521 (2018). https://doi.org/10.1140/epjp/i2018-12350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12350-1

Navigation