Skip to main content
Log in

Heat source identification of some parabolic equations based on the method of fundamental solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we consider inverse problems of the heat conduction process in one and two-dimensional homogeneous bodies of finite size, subject to the given initial and boundary conditions. The considered inverse problems are severely ill-posed since their solutions; if they exist, they do not depend continuously on the input data. We obtain stable solutions for several inverse problems by proposing a meshless regularization technique based on the combination of the method of fundamental solutions and the Tikhonov’s regularization method. In particular, we use the given information at the terminal state to estimate the space-dependent heat source in the one-dimensional case and the space- and time-dependent heat source in the two-dimensional case. Numerical results demonstrate high accuracy and low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.V. Beck, B. Blackwell, C. Clair, Inverse Conduction Ill-posed Problems (New York, Wiley, 1985)

  2. V.T. Borukhov, P.N. Vabishchevich, Comput. Phys. Commun. 126, 32 (2000)

    Article  ADS  Google Scholar 

  3. V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences (Springer, New York, 1998)

  4. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer, 2011)

  5. K. Rashedi, H. Adibi, M. Dehghan, Inverse Probl. Sci. Eng. 22, 1077 (2014)

    Article  MathSciNet  Google Scholar 

  6. K. Rashedi, H. Adibi, J. Amani Rad, K. Parand, Eng. Anal. Bound. Elem. 40, 1 (2014)

    Article  MathSciNet  Google Scholar 

  7. A.A. Samarskii, A.N. Vabishchevich, Computational Heat Transfer (Wiley, Chichester, 1995)

  8. A. Shidfar, A. Babaei, A. Molabahrami, Appl. Math. Comput. 60, 1209 (2010)

    Article  Google Scholar 

  9. A. Ebel, T. Davitashvili, Air Water and Soil Quality Modelling for Risk and Impact Assessment (Springer, Dordrecht, 2007)

  10. M. Dehghan, Numer. Methods Partial Differ. Equ. 22, 220 (2006)

    Article  Google Scholar 

  11. M. Dehghan, Math. Comput. Simul. 61, 89 (2003)

    Article  Google Scholar 

  12. M. Dehghan, Appl. Num. Math. 37, 489 (2001)

    Article  Google Scholar 

  13. Y. Liu, J. Comput. Appl. Math. 110, 115 (1999)

    Article  MathSciNet  Google Scholar 

  14. M. Shamsi, M. Dehghan, Numer. Methods Partial Differ. Equ. 28, 74 (2012)

    Article  Google Scholar 

  15. M. Dehghan, Numer. Methods Partial Differ. Equ. 18, 193 (2002)

    Article  Google Scholar 

  16. G.W. Batten Jr., Math. Comput. 17, 405 (1963)

    Article  Google Scholar 

  17. J.R. Cannon, Quart. Appl. Math. 21, 155 (1963)

    Article  MathSciNet  Google Scholar 

  18. M. Dehghan, M. Shamsi, Numer. Methods Partial Differ. Equ. 22, 1255 (2006)

    Article  Google Scholar 

  19. J.H. Cushman, T.R. Ginn, Transp. Porous Media 13, 123 (1993)

    Article  Google Scholar 

  20. J.R. Cannon, S.P. Esteva, J. Van der Hoek, SIAM J. Numer. Anal. 24, 499 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.R. Cannon, Y. Lin, J. Math. Anal. Appl. 145, 470 (1990)

    Article  MathSciNet  Google Scholar 

  22. J.R. Cannon, J. Van Der Hoek, Ann. Mat. Pura Appl. 130, 385 (1982)

    Article  MathSciNet  Google Scholar 

  23. J.R. Cannon, Y. Lin, S. Wang, Meccanica 27, 85 (1992)

    Article  Google Scholar 

  24. J.R. Cannon, H.M. Yin, Differ. Equ. 79, 266 (1989)

    Article  ADS  Google Scholar 

  25. J. Chabrowski, Nagoya Math. J. 93, 109 (1984)

    Article  MathSciNet  Google Scholar 

  26. W.A. Day, Quart. Appl. Math. 40, 319 (1982)

    Article  MathSciNet  Google Scholar 

  27. K. Deng, Quart. Appl. Math. 50, 517 (1992)

    Article  MathSciNet  Google Scholar 

  28. N.I. Ionkin, Differ. Equ. 15, 911 (1980)

    Google Scholar 

  29. N.I. Ionkin, E.I. Moiseev, Differ. Equ. 15, 915 (1980)

    Google Scholar 

  30. B. Kawohl, Quart. Appl. Math. 45, 751 (1987)

    Article  Google Scholar 

  31. Y. Lin, Parabolic partial differential equations subject to non-local boundary conditions, PhD Dissertation, Department of Pure and Applied Mathematics, Washington State University, 1988

  32. Y. Lin, S. Xu, H.M. Yin, Int. J. Math. Sci. 20, 147 (1997)

    Article  Google Scholar 

  33. W. Rundell, Appl. Anal. 10, 231 (1980)

    Article  Google Scholar 

  34. N.I. Yurchuk, Differ. Equ. 22, 1457 (1986)

    Google Scholar 

  35. A.I. Kozhanov, R.R. Safiullova, J. Inverse Ill-Posed Probl. 18, 1 (2010)

    Article  MathSciNet  Google Scholar 

  36. A. Erdem, Math. Methods Appl. Sci. 38, 1393 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. R. Cannon, The One-dimensional Heat Equation (Addison-Wesley, Reading, MA, 1984)

  38. M. Dehghan, Chaos, Solitons Fractals 32, 661 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Dehghan, M. Tatari, Numer. Methods Partial Differ. Equ. 23, 984 (2007)

    Article  Google Scholar 

  40. J.A. Rad, K. Rashedi, K. Parand, H. Adibi, Eng. Comput. 33, 547 (2017)

    Article  Google Scholar 

  41. A. Karageorghis, D. Lesnic, L.Marin, Inverse Probl. Sci. Eng. 19, 309 (2011)

    Article  MathSciNet  Google Scholar 

  42. E. Kita, N. Kamiyia, Adv. Eng. Softw. 24, 3 (1995)

    Article  Google Scholar 

  43. E. Trefftz, Ein Gegenstuck zum Ritzschen Verfahren, in 2er Intern. Kongr. Techn. Mech. Zurich (1926) pp. 131--137

  44. B.T. Johansson, D. Lesnic, T. Reeve, Inverse Probl. Sci. Eng. 19, 659 (2011)

    Article  MathSciNet  Google Scholar 

  45. T. Mynt-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers (Birkhauser, 2007)

  46. B.T. Johansson, D. Lesnic, T. Reeve, Appl. Math. Model. 35, 4367 (2011)

    Article  MathSciNet  Google Scholar 

  47. B.T. Johansson, D. Lesnic, T. Reeve, Int. J. Comput. Math. 88, 1697 (2011)

    Article  MathSciNet  Google Scholar 

  48. B.T. Johansson, D. Lesnic, T. Reeve, Int. J. Comput. Math. 89, 1555 (2012)

    Article  MathSciNet  Google Scholar 

  49. B.T. Johansson, D. Lesnic, T. Reeve, Int. Commun. Heat Mass 39, 887 (2012)

    Article  Google Scholar 

  50. T. Reeve, B.T. Johansson, Eng. Anal. Bound. Elem. 37, 569 (2013)

    Article  MathSciNet  Google Scholar 

  51. J. Wen, M. Yamamoto, T. Wei, Inverse Probl. Sci. Eng. 21, 485 (2013)

    Article  MathSciNet  Google Scholar 

  52. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980)

  53. K. Rashedi, M. Sini, Inverse Probl. 31, 1 (2015)

    Article  Google Scholar 

  54. P.C. Hansen, SIAM Rev. 34, 561 (1992)

    Article  MathSciNet  Google Scholar 

  55. R. Mathon, R.L. Johnston, SIAM J. Numer. Anal. 14, 638 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  56. K. Rashedi, H. Adibi, M. Dehghan, Numer. Methods Partial Differ. Equ. 31, 1995 (2015)

    Article  Google Scholar 

  57. K. Rashedi, H. Adibi, M. Dehghan, Comput. Math. Appl. 65, 1990 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Rashedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashedi, K., Sarraf, A. Heat source identification of some parabolic equations based on the method of fundamental solutions. Eur. Phys. J. Plus 133, 403 (2018). https://doi.org/10.1140/epjp/i2018-12193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12193-8

Navigation