Skip to main content
Log in

Spectrum of Schrödinger Hamiltonian operator with singular inverted complex and Kratzer’s molecular potentials in fractional dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Singular potentials play a key role in the study of quantum properties of molecular interactions and in different branches of physics and quantum chemistry. They assist us to understand the structure of condensed matter and several biological dynamical systems as well as a number of chemical processes. Complex-potential models arise also in nuclear, atomic molecular physics and other fields, and are of special interest. Most of the studies done in the literature are based on the analysis of quantum systems with integer dimensions. However, the concept of fractional or non-integer dimensions has received recently much interest, since a number of quantum physics phenomena are accurately modelled in fractional dimensional spaces. In this paper, we determine the spectrum of the Schrödinger operator in fractional dimensions with an inverted complex singular potential and we solve the corresponding time-dependent wave equation for the case of a complex singular potential and a Kratzer’s molecular potential, which has wide applications in solid-state physics and molecular physics. Several properties are analyzed and discussed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1982)

  2. J. Feder, Fractals (Plenum Press, New York, 1988)

  3. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  Google Scholar 

  4. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

  5. E. Nelson, Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1966)

  6. A. Schäfer, B. Müller, J. Phys. A 19, 3891 (1986)

    Article  ADS  Google Scholar 

  7. D. Hochberg, J.T. Wheeler, Phys. Rev. D 43, 2617 (1991)

    Article  ADS  Google Scholar 

  8. K.G. Wilson, M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972)

    Article  ADS  Google Scholar 

  9. K.G. Wilson, Phys. Rev. D 7, 2911 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Eyink, Commun. Math. Phys. 125, 613 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  11. V.E. Tarasov, Adv. High Energy Phys. 2014, ID957863 (2014)

    Article  Google Scholar 

  12. H. Kleinert, EPL 100, 10001 (2012)

    Article  ADS  Google Scholar 

  13. S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, Phys. Rev. Lett. 112, 141601 (2014)

    Article  ADS  Google Scholar 

  14. N. Laskin, Phys. Lett. A 268, 298 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Laskin, Phys. Lett. A 268, 268 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Calcagni, G. Nardelli, M. Scalisi, J. Math. Phys. 53, 102110 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Kroger, Phys. Rep. 323, 81 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.A. Lohe, A. Thilagam, J. Phys. A 37, 6181 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.A. Lohe, Rep. Math. Phys. 57, 131 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Gefen, A. Aharony, B. Mandelbrot, J. Phys. A 16, 1267 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Gefen, A. Aharony, Y. Shapir, B. Mandelbrot, J. Phys. A 17, 435 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Gefen, A. Aharony, B. Mandelbrot, J. Phys. A 17, 1277 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Patel, K.S. Raghunathan, Phys. Rev. A 86, 012332 (2012)

    Article  ADS  Google Scholar 

  25. J. Zierenberg, N. Fricke, M. Marenz, F.P. Spitzner, V. Blavatska, W. Janke, Phys. Rev. E 96, 062125 (2017)

    Article  ADS  Google Scholar 

  26. M. Naber, J. Math. Phys. 45, 3339 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Secchi, Topol. Methods Nonlinear Anal. 47, 9 (2016)

    Google Scholar 

  28. Y. Hong, Y. Sire, Commun. Pure Appl. Anal. 14, 2265 (2015)

    Article  MathSciNet  Google Scholar 

  29. D. Zhang, Yi. Zhang, Z. Zhang, N. Ahmed, Ya. Zhang, F. Li, M.R. Belic, M. Xiao, Ann. Phys. 529, 1700149 (2017)

    Article  Google Scholar 

  30. S. Longhi, Opt. Lett. 40, 1117 (2015)

    Article  ADS  Google Scholar 

  31. V. Ambrosio, G.M. Figueiredo, Asympt. Anal. 105, 159 (2017)

    Google Scholar 

  32. J. Dong, J. Math. Phys. 55, 032102 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Y. Luchko, J. Math. Phys. 54, 012111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Liemert, A. Kienle, Mathematics 4, 31 (2016)

    Article  Google Scholar 

  35. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons, New York, 1993)

  36. B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Institute for Nonlinear Science-Springer, New York, 2003)

  37. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publishing, River Edge, 2000)

  38. R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific Publishing Company, 2011)

  39. F.B. Tatom, Fractals 03, 217 (1995)

    Article  MathSciNet  Google Scholar 

  40. A. Rocco, B.J. West, Phys. A 265, 535 (1999)

    Article  Google Scholar 

  41. S. Butera, M.D. Paola, Ann. Phys. 350, 146 (2014)

    Article  ADS  Google Scholar 

  42. F.H. Stillinger, J. Math. Phys. 18, 1224 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Palmer, P.N. Stavrinou, J. Phys. A 37, 6987 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Zubair, M.J. Mughal, Q.A. Naqvi, A.A. Rizvi, Prog. Electromagn. Res. 114, 255 (2011)

    Article  Google Scholar 

  45. V.E. Tarasov, Commun. Nonlinear Sci. Numer. Simul. 20, 360 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. R.A. El-Nabulsi, D.F.M. Torres, J. Math. Phys. 49, 053521 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  47. R.A. El-Nabulsi, Chaos, Solitons Fractals 42, 2614 (2009)

    Article  ADS  Google Scholar 

  48. R.A. El-Nabulsi, Mod. Phys. Lett. B 23, 3369 (2009)

    Article  ADS  Google Scholar 

  49. R.A. El-Nabulsi, Comput. Math. Appl. 62, 1568 (2011)

    Article  MathSciNet  Google Scholar 

  50. A.S. Balankin, Phys. Lett. A 210, 51 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  51. A.S. Balankin, B.E. Elizarraraz, Phys. Rev. E 85, 056314 (2012)

    Article  ADS  Google Scholar 

  52. A.S. Balankin, B. Espinoza, Phys. Rev. E 85, 025302(R) (2012)

    Article  ADS  Google Scholar 

  53. A.S. Balankin, Phys. Lett. A 381, 623 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  54. A.K. Golmankhaneh, D. Baleanu, J. Mod. Opt. 63, 1364 (2016)

    Article  ADS  Google Scholar 

  55. A.K. Golmankhaneh, D. Baleanu, Int. J. Theor. Phys. 54, 1275 (2015)

    Article  Google Scholar 

  56. A.K. Golmankhaneh, D. Baleanu, Commun. Nonlinear Sci. 37, 125 (2016)

    Article  Google Scholar 

  57. A.K. Golmankhaneh, D. Baleanu, Open Phys. 14, 542 (2016)

    Article  Google Scholar 

  58. A.K. Golmankhaneh, C. Tunc, Chaos, Solitons Fractals 95, 140 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  59. Q.A. Naqvi, M. Zubair, Optik 127, 3243 (2016)

    Article  ADS  Google Scholar 

  60. M. Zubair, M.J. Mughal, Q.A. Naqvi, Prog. Electromagn. Res. Lett. 19, 137 (2010)

    Article  Google Scholar 

  61. S. Menouar, J.R. Choi, AIP Adv. 6, 095110 (2016)

    Article  ADS  Google Scholar 

  62. S. Menouar, J.R. Choi, J. Korean Phys. Soc. 68, 505 (2016)

    Article  ADS  Google Scholar 

  63. N. Ferkous, A. Bounemes, M. Maamache, Phys. Scr. 88, 035001 (2013)

    Article  ADS  Google Scholar 

  64. J.R. Choi, S. Menouar, S. Medjber, H. Baccar, J. Phys. Commun. 1, 052001 (2017)

    Article  Google Scholar 

  65. H.E. Camblong, L.N. Epele, H. Fanchiotti, C.A.G. Canal, Phys. Rev. Lett. 87, 220402 (2001)

    Article  ADS  Google Scholar 

  66. H.X. Quan, L. Guang, W.Z. Min, N.L. Bin, M. Yan, Commun. Theor. Phys. 53, 242 (2010)

    Article  ADS  Google Scholar 

  67. S. Flugge, Practical Quantum Mechanics I (Springer, Berlin, Heidelberg, New York, 1971)

  68. L.C. Detwiler, J.R. Klauder, Phys. Rev. D 11, 1436 (1975)

    Article  ADS  Google Scholar 

  69. V.C. Aguilera-Navarro, E. Ley Koo, Am. J. Phys. 44, 1064 (1976)

    Article  ADS  Google Scholar 

  70. T. Fulop, SIGMA 3, 107 (2007)

    ADS  MathSciNet  Google Scholar 

  71. A.K. Roy, Int. J. Quant. Chem. 114, 861 (2005)

    Article  ADS  Google Scholar 

  72. R. Dutt, A. Gangopadhyaya, C. Rasinariu, U. Sukhatme, J. Phys. A 34, 4129 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  73. D. Hundertmark, E.H. Lieb, L.E. Thomas, Adv. Theor. Math. Phys. 2, 719 (1998)

    Article  MathSciNet  Google Scholar 

  74. P.D. Hislop, I.M. Sigal, Introduction to Spectral Theory with Applications to Schrodinger Operators (Springer, Berlin, 1996)

  75. M. Christ, J. Am. Math. Soc. 11, 771 (1998)

    Article  Google Scholar 

  76. M. Christ, A. Kiselev, Geom. Funct. Anal. 12, 1174 (2002)

    Article  MathSciNet  Google Scholar 

  77. S. Denisov, Int. Math. Res. Not. 74, 3963 (2004)

    Article  Google Scholar 

  78. F. Finster, J.M. Isidro, J. Math. Phys. 58, 092104 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  79. J. Derezinski, S. Richard, Ann. Henri Poincaré 18, 869 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  80. T. Kato, Ann. Scuola Norm. Sup. Pisa 5, 105 (1978)

    Google Scholar 

  81. H. Brezis, T. Kato, J. Math. Pure Appl. 58, 137 (1979)

    Google Scholar 

  82. V. Liskevich, A. Manavi, J. Funct. Anal. 151, 281 (1997)

    Article  MathSciNet  Google Scholar 

  83. V. Mikhailets, V. Molyboga, Methods Funct. Anal. Topol. 19, 16 (2013)

    Google Scholar 

  84. A.Yu. Voronin, Phys. Rev. A 67, 062706 (2003)

    Article  ADS  Google Scholar 

  85. S. Kar, R.P. Parwani, EPL 80, 30004 (2007)

    Article  ADS  Google Scholar 

  86. N.N. Lebedev, Special Functions and Their Applications (Dover Publications, Inc., New York, 1972)

  87. I.Ya. Goldsheid, B.A. Khoruzhenko, Phys. Rev. Lett. 80, 2897 (1998)

    Article  ADS  Google Scholar 

  88. K. Hirota, J. Math. Phys. 58, 102018 (2017)

    Google Scholar 

  89. F. Cannata, G. Junker, J. Trost, Phys. Lett. A 246, 219 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  90. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  91. C.M. Bender, S. Boettcher, J. Phys. A 31, L273 (1998)

    Article  ADS  Google Scholar 

  92. A.A. Zyablovsky, A.P. Vinogradov, A.A. Pukhov, A.V. Dorofeenko, A.A. Lisyansky, Phys. Usp. 57, 1063 (2014)

    Article  ADS  Google Scholar 

  93. D. Wojcik, I. Białynicki-Birula, K. Zyczkowski, Phys. Rev. Lett. 85, 5022 (2000)

    Article  ADS  Google Scholar 

  94. M. Zubair, M.J. Mughal, Q.A. Naqvi, Nonlinear Anal. 12, 2844 (2011)

    Article  Google Scholar 

  95. M. Zubair, M.J. Mughal, Q.A. Naqvi, J. Electrom. Waves Appl. 25, 1481 (2011)

    Google Scholar 

  96. M. Zubair, M.J. Mughal, Q.A. Naqvi, Electromagnetic Wave Propagation in Fractional Space, in Electromagnetic Fields and Waves in Fractional Dimensional Space, in Springer Briefs in Applied Sciences and Technology (Springer, Berlin, Heidelberg, 2012)

  97. J. Martins, H.V. Ribeiro, L.R. Evangelista, L.R. da Silva, E.K. Lenzi, Appl. Math. Comput. 219, 2313 (2012)

    MathSciNet  Google Scholar 

  98. J. Oppenheim, S. Wehner, Science 330, 1072 (2007)

    Article  ADS  Google Scholar 

  99. D. Bouaziz, Ann. Phys. 355, 269 (2015)

    Article  ADS  Google Scholar 

  100. J.A.K. Suykens, Phys. Lett. A 373, 1201 (2009)

    Article  ADS  Google Scholar 

  101. Z.-Y. Li, J.-L. Fu, L.-Q. Chen, Phys. Lett. A 374, 106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  102. T.F. Kamalov, J. Phys. Conf. Ser. 442, 012051 (2013)

    Article  Google Scholar 

  103. Y. Kaminaga, J. Phys. A 29, 5049 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Spectrum of Schrödinger Hamiltonian operator with singular inverted complex and Kratzer’s molecular potentials in fractional dimensions. Eur. Phys. J. Plus 133, 277 (2018). https://doi.org/10.1140/epjp/i2018-12149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12149-0

Navigation