Skip to main content
Log in

Free vibration characteristics of multilayered composite plates in a hygrothermal environment via the refined hyperbolic theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, vibration characteristics of multilayered plates in a hygrothermal environment are discussed. The analysis considers the reduced properties of the lamina material at high concentrations of moisture and temperature. The multilayered plate is modelled in the context of a refined hyperbolic shear deformation theory that contains hygrothermal effects. The numerical results for dimensionless natural frequencies of multilayered composites under the action of both temperature and moisture concentration are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Whitney, J.E. Ashton, AIAA J. 9, 1708 (1971)

    Article  ADS  Google Scholar 

  2. B.P. Patel, M. Ganapathi, D.P. Makheeha, Compos. Struct. 56, 25 (2002)

    Article  Google Scholar 

  3. K.S. Sai Ram, P.K. Sinha, J. Sound Vib. 158, 133 (1992)

    Article  ADS  Google Scholar 

  4. K.S. Sai Ram, P.K. Sinha, AIAA J. 30, 2353 (1992)

    Article  ADS  Google Scholar 

  5. H.S. Shen, Int. J. Mech. Sci. 43, 1259 (2001)

    Article  Google Scholar 

  6. A.M. Zenkour, Acta Mech. 171, 171 (2001)

    Article  Google Scholar 

  7. A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Arch. Civ. Mech. Eng. 14, 144 (2014)

    Article  Google Scholar 

  8. S. Natarajan, P.S. Deogekar, G. Manickam, S. Belouettar, Compos. Struct. 108, 848 (2014)

    Article  Google Scholar 

  9. A.M. Zenkour, Compos. Struct. 94, 3685 (2012)

    Article  Google Scholar 

  10. A.M. Zenkour, J. Mech. Mater. Struct. 7, 687 (2012)

    Article  Google Scholar 

  11. A.M. Zenkour, AIAA J. 52, 1466 (2014)

    Article  ADS  Google Scholar 

  12. A.M. Zenkour, Appl. Math. Model. 38, 6133 (2014)

    Article  MathSciNet  Google Scholar 

  13. A.M. Zenkour, Int. J. Mech. Mater. Design 13, 515 (2017)

    Article  Google Scholar 

  14. A.M. Zenkour, Thin-Walled Struct. 123, 333 (2018)

    Article  Google Scholar 

  15. H.S. Shen, J. Solids Struct. 38, 6357 (2001)

    Article  Google Scholar 

  16. H.S. Shen, Compos. Struct. 56, 73 (2002)

    Article  Google Scholar 

  17. X.L. Huang, H.S. Shen, J.J. Zheng, Compos. Sci. Technol. 64, 1419 (2004)

    Article  Google Scholar 

  18. M. Bouazza, A. Tounsi, A. Benzair, E.A. Adda-bedia, Mater. Design 28, 1116 (2007)

    Article  Google Scholar 

  19. A.E. Adda-Bedia, M. Bouazza, A. Tounsi, A. Benzair, M. Maacho, J. Mater. Process. Technol. 199, 199 (2008)

    Article  Google Scholar 

  20. S. Emam, M.A. Eltaher, Compos. Struct. 152, 665 (2016)

    Article  Google Scholar 

  21. T.R. Mahapatra, S.K. Panda, V.R. Kar, Mech. Adv. Mater. Struct. 23, 1343 (2016)

    Article  Google Scholar 

  22. T.R. Mahapatra, S.K. Panda, V.R. Kar, Int. J. Comput. Methods 13, 1650015 (2016)

    Article  MathSciNet  Google Scholar 

  23. T.R. Mahapatra, S.K. Panda, Aerospace Sci. Technol. 49, 276 (2016)

    Article  Google Scholar 

  24. R. Mahapatra, S.K. Panda, S. Dash, IOP Conf. Ser.: Mater. Sci. Eng. 149, 012151 (2016)

    Article  Google Scholar 

  25. N.D. Duc, Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells (Vietnam National University Press, Hanoi, 2014)

  26. E. Reissner, J. Appl. Mech. 12, 69 (1945)

    MathSciNet  Google Scholar 

  27. R.D. Mindlin, J. Appl. Mech. 18, 31 (1951)

    Google Scholar 

  28. E. Reissner, J. Math. Phys. 23, 184 (1944)

    Article  MathSciNet  Google Scholar 

  29. J.N. Reddy, J. Appl. Mech. 51, 745 (1984)

    Article  ADS  Google Scholar 

  30. E. Carrera, Appl. Mech. Rev. 54, 301 (2001)

    Article  ADS  Google Scholar 

  31. M. Karama, K.S. Afaq, S. Mistou, Int. J. Solids Struct. 40, 1525 (2003)

    Article  Google Scholar 

  32. M. Aydogdu, Compos. Struct. 89, 94 (2009)

    Article  Google Scholar 

  33. N.D. Duc, V.D. Quang, P.D. Nguyen, T.M. Chien, J. Appl. Comput. Mech. (2018) https://doi.org/10.22055/JACM.2018.23219.1151

  34. P.H. Cong, V.M. Anh, N.D. Duc, J. Therm. Stresses 40, 704 (2017)

    Article  Google Scholar 

  35. N.D. Duc, P.H. Cong, J. Vib. Cont. 21, 637 (2015)

    Article  Google Scholar 

  36. N.D. Duc, P.H. Cong, Cog. Eng. 2, 1045222 (2015)

    Google Scholar 

  37. R.P. Shimpi, AIAA J. 40, 137 (2002)

    Article  ADS  Google Scholar 

  38. R.P. Shimpi, H.G. Patel, Int. J. Solids Struct. 43, 6783 (2006)

    Article  Google Scholar 

  39. R.P. Shimpi, H.G. Patel, J. Sound Vib. 296, 979 (2006)

    Article  ADS  Google Scholar 

  40. S.E. Kim, H.T. Thai, J. Lee, Thin Wall. Struct. 47, 455 (2009)

    Article  Google Scholar 

  41. H.T. Thai, S.E. Kim, Int. J. Mech. Sci. 52, 626 (2010)

    Article  Google Scholar 

  42. M. Bouazza, A. Lairedj, N. Benseddiq, S. Khalki, Mech. Res. Commun. 73, 117 (2016)

    Article  Google Scholar 

  43. M. Touratier, Int. J. Eng. Sci. 29, 901 (1991)

    Article  Google Scholar 

  44. A. Toledano, H. Murakami, Int. J. Solids Struct. 23, 111 (1987)

    Article  Google Scholar 

  45. E. Carrera, Appl. Mech. Rev. 56, 287 (2003)

    Article  ADS  Google Scholar 

  46. A.M. Zenkour, Mech. Adv. Mater. Struct. 19, 551 (2012)

    Article  Google Scholar 

  47. Z. Wu, Q. Xu, S. Lu, X. Ren, Compos. Struct. 152, 546 (2016)

    Article  Google Scholar 

  48. K. Swaminathan, S.S. Patil, Compos. Struct. 82, 209 (2008)

    Article  Google Scholar 

  49. H.-S. Shen, J.J. Zheng, X.L. Huang, Compos. Struct. 60, 57 (2003)

    Article  Google Scholar 

  50. A. Lal, B.N. Singh, J. Thermoplast. Compos. Mater. 23, 57 (2010)

    Article  Google Scholar 

  51. C.F. Liu, C.H. Huang, Comput. Struct. 60, 95 (1996)

    Article  Google Scholar 

  52. C.-S. Chen, C.-W. Chen, W.-R. Chen, Y.-C. Chang, Meccanica 48, 2311 (2013)

    Article  Google Scholar 

  53. P. Ribeiro, E. Jansen, J. Sound Vib. 315, 626 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Zenkour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazza, M., Zenkour, A.M. Free vibration characteristics of multilayered composite plates in a hygrothermal environment via the refined hyperbolic theory. Eur. Phys. J. Plus 133, 217 (2018). https://doi.org/10.1140/epjp/i2018-12050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12050-x

Navigation