Skip to main content
Log in

UV photo-responsivity of a large-area MWCNT-Si photodetector operated at cryogenic temperature

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the last decades much effort has been addressed to realize novel solid state photo-detectors with a high quantum efficiency in the UV wavelength region to be used in experiments detecting Cherenkov or fluorescence radiation even at cryogenic temperatures. Among the possible devices with these characteristics, the large-area solid detectors made of n-doped silicon substrate coated with Multi-Walled Carbon Nanotubes (MWCNTs) appear to be particularly promising since they combine the great UV radiation absorbance of MWCNTs (at about 200 nm) with their unique characteristics for electrical conductivity and mechanical resistance at low temperatures. In this work we present the cryogenic characteristics of a MWCNT-Si large-area (1 cm2) photo-detector, in which a UV photo-sensitive heterojunction is obtained growing, by Chemical Vapour Deposition (CVD), multi-walled carbon nanotubes on an n-type silicon substrate. Measurements have been made at various temperatures in the range from 5K to 300K by illuminating the photo-detector with a 378 nm UV continuous laser light source. Results demonstrate the capability of such device to be successfully employed in cryogenic experiments as well at room temperature with high stability and high photon detection efficiency in the UV region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Xu, Infrared Phys. Technol. 42, 485 (2001)

    Article  ADS  Google Scholar 

  2. M.E. Itkis, Science 312, 413 (2006)

    Article  ADS  Google Scholar 

  3. M. Passacantando et al., Appl. Phys. Lett. 93, 051911 (2008)

    Article  ADS  Google Scholar 

  4. A. Ambrosio et al., Nucl. Instrum. Methods A 589, 398 (2008)

    Article  ADS  Google Scholar 

  5. U. Coscia et al., Solid State Sci. 11, 1806 (2009)

    Article  ADS  Google Scholar 

  6. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  7. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  8. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, 1998)

  9. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2003)

  10. M. Meyyappan, Carbon Nanotubes Science and Applications (CRC Press, 2005)

  11. C. Aramo et al., Beilstein J. Nanotechnol. 6, 704 (2015)

    Article  Google Scholar 

  12. C. Aramo et al., Nucl. Instrum. Methods A 845, 12 (2017)

    Article  ADS  Google Scholar 

  13. CTA Collaboration, Astropart. Phys. 43, 3 (2013)

    Article  Google Scholar 

  14. Pierre Auger Collaboration, Nucl. Instrum. Methods A 620, 227 (2010)

    Article  ADS  Google Scholar 

  15. P. Buzhan et al., Nucl. Instrum. Methods A 504, 48 (2003)

    Article  ADS  Google Scholar 

  16. L. Capparelli et al., Nucl. Instrum. Methods A 9-10, 24 (2015)

    Google Scholar 

  17. A. Tinti et al., Nucl. Instrum. Methods A 629, 377 (2011)

    Article  ADS  Google Scholar 

  18. M. Passacantando, V. Grossi, S. Cantucci, Appl. Phys. Lett. 100, 163119 (2012)

    Article  ADS  Google Scholar 

  19. A. Ambrosio et al., J. Instrum. 7, P08013 (2012)

    Article  Google Scholar 

  20. A. Naeemi A., J.D. Meindl, IEEE Electron Dev. Lett. 28, 135 (2007)

    Article  ADS  Google Scholar 

  21. M. Ambrosio et al., Nucl. Instrum. Methods A 610, 1 (2009)

    Article  ADS  Google Scholar 

  22. C. Douglas Giancoli, Physics, 4th edition (Prentice Hall, 1995)

  23. A.G. Chiariello, A. Maffucci, G. Miano, IEEE Trans. Electromagn. Compat. 54, 158 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Aramo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonavolontà, C., Aramo, C., Ambrosio, M. et al. UV photo-responsivity of a large-area MWCNT-Si photodetector operated at cryogenic temperature. Eur. Phys. J. Plus 133, 95 (2018). https://doi.org/10.1140/epjp/i2018-11930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11930-3

Navigation