Skip to main content
Log in

Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The two most significant categories of physical and chemical pollutants in sediments (radionuclides and metals) were investigated in this article, in order to evaluate pollution levels in marine sediments from eight different selected sites of the Calabria region, south of Italy. In particular samples were analyzed to determine natural and anthropic radioactivity and metal concentrations, in order to assess any possible radiological hazard, the level of contamination and the possible anthropogenic impact in the investigated area. Activity concentrations of 226Ra, 232Th, 40K and 137Cs were measured by High Purity Germanium (HPGe) gamma spectrometry. The obtained results show that, for radium (in secular equilibrium with uranium), the specific activity ranges from (\( 14 \pm 1\)) Bq/kg dry weight (d.w.) to (\( 54 \pm 9\)) Bq/kg d.w.; for thorium, from (\( 12 \pm 1\)) Bq/kg d.w. to (\( 83 \pm 8\)) Bq/kg d.w.; for potassium, from (\( 470 \pm 20\)) Bq/kg d.w. to (\( 1000 \pm 70\)) Bq/kg d.w. and for cesium it is lower than the minimum detectable activity value. The absorbed gamma dose rate in air (D), the annual effective dose equivalent (AEDE) outdoor and the external hazard index (\( H_{\rm ex}\)) were calculated to evaluate any possible radiological risk, mainly due to the use of marine sediments for the beach nourishment. The results show low levels of radioactivity, thus discarding any significant radiological risk. Some metals (As, Cd, Crtot, Hg, Ni, Pb, Cu, Zn, Mn and Fe), that could be released into the environment by both natural and anthropogenic sources, were investigated through inductively coupled plasma mass spectrometry (ICP-MS) measurements and compared with the limits set by the Italian Legislation, to assess any possible contamination. Experimental results show that they are much lower than the contamination threshold value, thus excluding their presence as pollutants. The degree of sediment contaminations were quantified using enrichment factor (EF) and geoaccumulation index ( Igeo) for some potential hazardous elements. Results show that EF and Igeo values of As, Pb and Mn were the greatest among the studied metals. Data of this preliminary study could be helpful in the future to obtain background levels in marine sediments of the investigated region and to develop environmental regulatory frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ravisankar, A. Chandrasekaran, P. Vijayagopal et al., Rad. Phys. Chem. 81, 1789 (2012)

    Article  ADS  Google Scholar 

  2. A. Navas, J. Soto, J. Machin, Appl. Radiat. Isot. 57, 579 (2002)

    Article  Google Scholar 

  3. M. Eisenbud, Environmental Radioactivity (Academic Press, USA, 1987)

  4. IAEA, Guidelines for radioelement mapping using gamma ray spectrometry data (IAEA-TECDOC-1363, 2003)

  5. F. Caridi, S. Marguccio, M. D'Agostino, A. Belvedere, G. Belmusto, Eur. Phys. J. Plus 131, 155 (2016)

    Article  Google Scholar 

  6. D.M. Hamby, A.K. Tynybekov, Environ. Monit. Assess. 73, 101 (2000)

    Article  Google Scholar 

  7. F. Caridi, M. D'Agostino, A. Belvedere, S. Marguccio, G. Belmusto, J. Instrum. 11, P05012 (2016)

    Article  Google Scholar 

  8. F. Caridi, G. Belmusto, Cogent Phys. 4, 1354957 (2017)

    Article  Google Scholar 

  9. F. Caridi, M. Messina, M. D'Agostino, Environm. Earth Sci. 76, 668 (2017)

    Article  Google Scholar 

  10. F. Caridi, S. Marguccio, A. Belvedere, G. Belmusto, G. Marcianò, G. Sabatino, A. Mottese, Environm. Earth Sci. 75, 629 (2016)

    Article  Google Scholar 

  11. H.D. Livingston, P.P. Povinec, Ocean Coastal Manag. 43, 689 (2000)

    Article  Google Scholar 

  12. X. Lu, X. Zhang, Radiat. Protect. Dosim. 130, 385 (2008)

    Article  Google Scholar 

  13. F. Caridi, M. D'Agostino, S. Marguccio, A. Belvedere, G. Belmusto, G. Marcianò, G. Sabatino, A. Mottese, Eur. Phys. J. Plus 131, 136 (2016)

    Article  Google Scholar 

  14. X. Lu, X. Zhang, F. Wang, China. Environ. Geol. 53, 1475 (2008)

    Article  ADS  Google Scholar 

  15. A.P. Mucha, M.T.S.D. Vasconcelos, A.A. Bordalo, Environm. Poll. 121, 169 (2003)

    Article  Google Scholar 

  16. P.A. Reis, J.C. Antunes, C. Marisa, R. Almeida, Environm. Monit. Assess. 159, 191 (2009)

    Article  Google Scholar 

  17. A. Naji, A. Ismail, Environm. Asia 4, 30 (2011)

    Google Scholar 

  18. F. Caridi, S. Marguccio, G. Durante, R. Trozzo, F. Fullone, A. Belvedere, M. D'Agostino, G. Belmusto, Eur. Phys. J. Plus 132, 56 (2017)

    Article  Google Scholar 

  19. F. Caridi, M. D'Agostino, A. Belvedere, S. Marguccio, G. Belmusto, M.F. Gatto, J. Instrum. 11, C10012 (2016)

    Article  Google Scholar 

  20. Ortec Gamma vision-32 v. 6 (2010)

  21. O. Sima, Health Phys. 62, 445 (1992)

    Article  Google Scholar 

  22. V. Ramasamy, G. Suresh, V. Meenakshisundaram, V. Ponnusamy, Appl. Radiat. Isot. 69, 184 (2011)

    Article  Google Scholar 

  23. United Nations Scientific Committee on Effects of Atomic Radiation, Exposures from Natural Radiation Sources (UNSCEAR, New York, 2000)

  24. United Nations Scientific Committee on Effects of Atomic Radiation, Sources and Effects of Ionizing Radiations (UNSCEAR, New York, 1993)

  25. J. Beretka, P.J. Mathew, Health Phys. 48, 87 (1985)

    Article  Google Scholar 

  26. EPA Method, Microwave assisted acid digestion of sediments, sludges, soils, and oils (2007) 3051 a

  27. F. Caridi, M. D'Agostino, M. Messina, G. Marcianò, L. Grioli, A. Belvedere, S. Marguccio, G. Belmusto, Eur. Phys. J. Plus 132, 189 (2017)

    Article  Google Scholar 

  28. A. Naji, A. Ismail, Environ. Asia 4, 30 (2011)

    Google Scholar 

  29. Y.Y. Turekian, K.H. Wedephol, Geol. Soc. Am. Bull. 72, 175 (1961)

    Article  ADS  Google Scholar 

  30. O. Amaro, G. Neri, M. Tarnatora, Landscape in Progress (University of Reggio Calabria, 2014) Online Edition

  31. Y. Orgun et al., Appl. Radiat. Isot. 65, 739 (2007)

    Article  Google Scholar 

  32. Italian Legislation (2006) D.Lgs 152, Tab. 2A/3B

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Caridi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caridi, F., Messina, M., Faggio, G. et al. Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy. Eur. Phys. J. Plus 133, 65 (2018). https://doi.org/10.1140/epjp/i2018-11887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11887-1

Navigation