Skip to main content
Log in

Condensation and critical exponents of an ideal non-Abelian gas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \( \vert T-T_{c}\vert^{-\rho}\) in which \( T_{c}\) denotes the condensation temperature and \( \rho\) is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bose, Z. Phys. 26, 178 (1924)

    Article  ADS  Google Scholar 

  2. A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 261 (1924)

  3. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 296, 198 (1995)

    Article  ADS  Google Scholar 

  4. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  5. F. London, Superfluids: Macroscopic theory of superconductivity, Structure of matter series (John Wiley and Sons, 1950)

  6. F. London, Superfluids: Macroscopic theory of superfluid helium, Structure of matter series (Wiley, 1954)

  7. F. London, Nature (London) 141, 643 (1938)

    Article  ADS  Google Scholar 

  8. N. Bogoliubov, Lectures on Quantum Statistics, No. v. 1 (Gordon and Breach Science Publishers, 1967)

  9. N. Bogoliubov, Lectures on Quantum Statistics, No. v. 2 (Gordon and Breach, 1970)

  10. R.M. May, Phys. Rev. 135, A1515 (1964)

    Article  ADS  Google Scholar 

  11. B. Mirza, H. Mohammadzadeh, Phys. Rev. E 82, 031137 (2010)

    Article  ADS  Google Scholar 

  12. B. Mirza, H. Mohammadzadeh, J. Phys. A: Math. Theor. 44, 475003 (2011)

    Article  ADS  Google Scholar 

  13. Z. Ebadi, B. Mirza, H. Mohammadzadeh, JCAP 11, 057 (2013)

    Article  ADS  Google Scholar 

  14. A. Algin, J. Stat. Mech. 2008, P10009 (2008)

    Article  Google Scholar 

  15. A. Algin, M. Senay, Phys. Rev. E 85, 041123 (2012)

    Article  ADS  Google Scholar 

  16. A. Rovenchak, Low. Temp. Phys. 39, 888 (2013)

    Article  ADS  Google Scholar 

  17. A. Rovenchak, Phys. Lett. A 378, 100 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Michoel, T. Verbeureb, J. Math. Phys. 40, 1268 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. H. Mohammadzadeh, F. Adli, S. Nouri, Phys. Rev. E 94, 062118 (2016)

    Article  ADS  Google Scholar 

  20. H. Mohammadzadeh, Y. Azizian-Kalandaragh, N. cheraghpour, F. Adli, J. Stat. Mech. 2017, 083104 (2017)

    Article  Google Scholar 

  21. B. Mirza, H. Mohammadzadeh, Phys. Rev. E 84, 031114 (2011)

    Article  ADS  Google Scholar 

  22. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  Google Scholar 

  23. F.D.M. Haldane, Phys. Rev. Lett. 67, 937 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.P. Polychronakos, Phys. Lett. B 365, 202 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.P. Polychronakos, Nucl. Phys. B 474, 529 (1996)

    Article  ADS  Google Scholar 

  26. A.Y. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  ADS  Google Scholar 

  27. S. Das Sarma, M. Freedman, C. Nayak, Phys. Rev. Lett. 94, 166802 (2005)

    Article  ADS  Google Scholar 

  28. E.C. Marini, J.C. Brozeguini, J. Stat. Mech. 9, P09038 (2014)

    Article  Google Scholar 

  29. E. Ardonne, E.A. Kim, J. Stat. Mech. 04, L04001 (2008)

    Google Scholar 

  30. J. Baugh, D.R. Finkelstein, A.A. Galiautdinov, J. Math. Phys. 42, 1489 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. D.R. Finkelstein, A.A. Galiautdinov, J. Math. Phys. 42, 3299 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Read, J. Math. Phys. 44, 558 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991)

    Article  ADS  Google Scholar 

  34. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  35. G. Volovik, JETP Lett. 70, 609 (1999)

    Article  ADS  Google Scholar 

  36. M. Wimmer, A.R. Akhmerov, M.V. Medvedyeva, J. Tworzydlo, C.W.J. Beenakker, Phys. Rev. Lett. 105, 046803 (2010)

    Article  ADS  Google Scholar 

  37. J.C.Y. Teo, C.L. Kane, Phys. Rev. Lett. 104, 046401 (2010)

    Article  ADS  Google Scholar 

  38. M. Freedman, M.B. Hastings, Ch. Nayak, X.L. Qi, Phys. Rev. B 84, 245119 (2011)

    Article  ADS  Google Scholar 

  39. B.I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, F. Oppen, Phys. Rev. B 85, 144501 (2012)

    Article  ADS  Google Scholar 

  40. W.-H. Huang, Phys. Lett. A 269, 333 (2000)

    Article  ADS  Google Scholar 

  41. W. Janke, D.A. Johnston, R. Kenna, Phys. Rev. E 67, 046106 (2003)

    Article  ADS  Google Scholar 

  42. D.A. Johnston, W. Janke, R. Kenna, Acta Phys. Pol. B 34, 4923 (2003)

    ADS  Google Scholar 

  43. W. Janke, D.A. Johnston, R. Kenna, Physica A 336, 181 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  44. B. Mirza, Z. Talaei, Phys. Lett. A 377, 513 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Guruswamy, K. Schoutens, Nucl. Phys. B 556, 530 (1999)

    Article  ADS  Google Scholar 

  46. Y.S. Wu, Phys. Rev. Lett. 73, 922 (1994)

    Article  ADS  Google Scholar 

  47. R.K. Pathria, P.D. Beale, Statistical Mechanics, 3rd edition (Academic Press, 2011)

  48. S. Sevingli, B. Tanatar, Phys. Lett. A 371, 389 (2007)

    Article  ADS  Google Scholar 

  49. Q. Fang, C. Ji-Sheng, J. Phys. B 43, 055302 (2010)

    Article  ADS  Google Scholar 

  50. H. Saygn, A. Iman, Appl. Energy 70, 49 (2001)

    Article  Google Scholar 

  51. D.Q. Yuan, C.J. Wang, Phys. Lett. A 363, 487 (2007)

    Article  ADS  Google Scholar 

  52. F. Qin, J.S. Chen, Phys. Rev. E 83, 021111 (2011)

    Article  ADS  Google Scholar 

  53. G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Chen, J. Math. Phys. 40, 830 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  55. J.D. Nulton, P. Salamon, Phys. Rev. A 31, 2520 (1985)

    Article  ADS  Google Scholar 

  56. H. Janyszek, R. Mrugala, J. Phys. A 23, 467 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  57. R.S. Ingarden, H. Janyszek, A. Kossakowski, T. Kawaguchi, Tensor NS 37, 105 (1982)

    Google Scholar 

  58. Y.-S. Wu, Phys. Rev. Lett. 73, 922 (1994)

    Article  ADS  Google Scholar 

  59. A. Khare, Fractional Statistics and Quantum Theory (World Scientific, Singapore, 1997)

  60. M.R. Ubriaco, Phys. Lett. A 376, 2899 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  61. D. Brody, N. Rivier, Phys. Rev. E 51, 1006 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Mohammadzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaei, Z., Mirza, B. & Mohammadzadeh, H. Condensation and critical exponents of an ideal non-Abelian gas. Eur. Phys. J. Plus 132, 463 (2017). https://doi.org/10.1140/epjp/i2017-11726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11726-y

Navigation