Skip to main content
Log in

Stability and electronic properties of Wn X(n=1-7, X= Cu, Mo) clusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The geometries, relative stabilities and electronic properties of a variety of possible structures of \(\rm{W}_{n}X\) (n = 1 -7, \( X={\rm Cu}\), Mo) clusters were systematically investigated by using density functional theory (DFT) method at the generalized gradient approximation (GGA) level for ground state structures. The results indicate that the ground state of WX is linear and the shift from planar to three-dimensional structures occurs at n = 3. The structures of tungsten clusters doped with Mo atom are tighter than those doped with copper ones. The calculated second-order differences in energies, dissociation energies and HOMO-LOMO energy gaps show pronounced odd-even oscillation behaviors. Particularly, \(\rm{W}_{n}\rm{Cu}\) clusters with odd-number atoms keep a higher relative stability than their neighboring ones, but \( \rm{W}_{n}\rm{Mo}\) clusters go by contraries. The magnetic properties of \( \rm{W}_{n}{\rm Cu}\) and \( \rm{W}_{n}\rm{Mo}\) are both weak except for WCu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Soltani, A.G. Boudjahem, Comput. Theor. Chem. 1047, 6 (2014)

    Article  Google Scholar 

  2. Q.L. Lu, Q.Q. Luo, L.L. Chen et al., Eur. Phys. J. D 61, 389 (2011)

    Article  ADS  Google Scholar 

  3. J. Lv, X. Bai, J.F. Jia et al., Physica B 407, 14 (2012)

    Article  ADS  Google Scholar 

  4. F. Kong, Y. Hu, J. Mol. Model. 20, 2087 (2014)

    Article  Google Scholar 

  5. K.C. Zhang, Y.F. Li, Y. Liu et al., Carbon 102, 39 (2016)

    Article  Google Scholar 

  6. S. Zhang, W. Dai, H. Liu et al., J. Mol. Struct. 1075, 220 (2014)

    Article  ADS  Google Scholar 

  7. D. Bhattacharjee, B.K. Mishra, A.K. Chakrabartty et al., Comput. Theor. Chem. 1034, 61 (2014)

    Article  Google Scholar 

  8. D. Bhattacharjee, B.K. Mishra, R.C. Deka, J. Mater. Sci. 50, 4586 (2015)

    Article  ADS  Google Scholar 

  9. S. Zhang, C.G. Luo, H.Y. Li et al., Mater. Chem. Phys. 160, 227 (2015)

    Article  Google Scholar 

  10. S.M. Carrión, R. Pis-Diez, F. Aguilera-Granja, Eur. Phys. J. D 67, 1 (2013)

    Article  ADS  Google Scholar 

  11. J. Du, X. Sun, D. Meng et al., J. Chem. Phys. 131, 044313 (2009)

    Article  ADS  Google Scholar 

  12. W. Yamaguchi, J. Murakami, Chem. Phys. 316, 45 (2005)

    Article  ADS  Google Scholar 

  13. X.Y. Zheng, X.R. Zhang, C. Chen et al., Comput. Appl. Chem. 4, 426 (2015)

    Google Scholar 

  14. X.Y. Zheng, X.R., Zhang, L.L. Zhang et al., Int. J. Mod. Phys. B 29, 1550184 (2015)

    Article  ADS  Google Scholar 

  15. B. Baguenard, J.C. Pinaré, C. Bordas et al., Phys. Rev. A 63, 533 (2001)

    Article  Google Scholar 

  16. X.R. Zhang, X.L. Ding, B. Dai et al., J. Mol. Struct. THEOCHEM 757, 113 (2005)

    Article  Google Scholar 

  17. H. Gao, W. Chen, Z. Zhang, Mater. Lett. 176, 181 (2016)

    Article  Google Scholar 

  18. T. Zapryanova, N. Jordanov, A. Milchev, Electroanal. Chem. 612, 47 (2008)

    Article  Google Scholar 

  19. B. Wang, S. Yoichi, N. Akira et al., J. Coord. Chem. 18, 45 (1988)

    Article  Google Scholar 

  20. B.X. Li, Z.W. Ma, Q.F. Pan, J. Clust. Sci. 27, 1041 (2016)

    Article  Google Scholar 

  21. P. Shao, X.Y. Kuang, L.P. Ding et al., Mol. Phys. 111, 569 (2012)

    Article  ADS  Google Scholar 

  22. H. Yuan, F. Jiang, W. Xie et al., Physica E 70, 77 (2015)

    Article  ADS  Google Scholar 

  23. J. Thakur, H.S. Saini, M. Singh et al., Physica E 78, 35 (2016)

    Article  ADS  Google Scholar 

  24. A. Halder, C. Huang, V.V. Kresin, J. Phys. Chem. C 119, 11178 (2015)

    Article  Google Scholar 

  25. J. Cao, Q. Li, Z.X. Wang et al., J. Clust. Sci. 27, 993 (2016)

    Article  Google Scholar 

  26. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 39, 845 (2008)

    Article  Google Scholar 

  27. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  28. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  29. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  30. B. Delley, Phys. Rev. B 66, 155125 (2002)

    Article  ADS  Google Scholar 

  31. L. Wang, D. Dong, S.J. Wang, J. Phys. Chem. Solids 76, 10 (2015)

    Article  ADS  Google Scholar 

  32. A. Poater, M. Duran, P. Jaque, J. Phys. Chem. B 110, 6526 (2006)

    Article  Google Scholar 

  33. M.D. Morse, Chem. Rev. 86, 1049 (1988)

    Article  Google Scholar 

  34. C.G. Li, H.J. Sun, B.Z. Ren et al., Mol. Phys. 114, 1 (2016)

    Article  Google Scholar 

  35. M. Vogel, K. Hansen, A. Herlert et al., Appl. Phys. B Lasers O 73, 411 (2001)

    Article  ADS  Google Scholar 

  36. K. Hansen, J.U. Andersen, J.S. Forster et al., Phys. Rev. A 63, 533 (2001)

    Article  Google Scholar 

  37. M.A. Tafoughalt, M. Samah, Comput. Theor. Chem. 1033, 23 (2014)

    Article  Google Scholar 

  38. V.A. Spasov, L. TaeckHong, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)

    Article  ADS  Google Scholar 

  39. H. Weidele, D. Kreisle, E. Recknagel et al., Chem. Phys. Lett. 237, 425 (1995)

    Article  ADS  Google Scholar 

  40. Z.J. Wu, Chem. Phys. Lett. 370, 510 (2003)

    Article  ADS  Google Scholar 

  41. H. Avik, V.K. Vitaly, Phys. Rev. B 48, 611 (2015)

    Google Scholar 

  42. A. Halder, A. Liang, V.V. Kresin, Nano Lett. 15, 1410 (2014)

    Article  ADS  Google Scholar 

  43. S. Yin, X. Xu, A. Liang et al., J. Supercond. Nov. Magn. 21, 265 (2008)

    Article  Google Scholar 

  44. A. Edelmann, W. Schießer, H. Vinek et al., Catal. Lett. 69, 11 (2000)

    Article  Google Scholar 

  45. J. Batista, A. Pintar, M. Ceh, Catal. Lett. 43, 79 (1997)

    Article  Google Scholar 

  46. I. Efremenko, M. Sheintuch, Chem. Phys. Lett. 401, 232 (2005)

    Article  ADS  Google Scholar 

  47. W.Y. Li, F.Y. Chen, J. Nanopart. Res. 15, 1809 (2013)

    Article  ADS  Google Scholar 

  48. J.G. Du, X.Y. Sun, G. Jiang, Eur. Phys. J. D 55, 111 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Xiurong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhicheng, Y., Xiurong, Z., Peiying, H. et al. Stability and electronic properties of Wn X(n=1-7, X= Cu, Mo) clusters. Eur. Phys. J. Plus 132, 451 (2017). https://doi.org/10.1140/epjp/i2017-11719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11719-x

Navigation