Skip to main content
Log in

A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we have considered both Newtonian and non-Newtonian nanofluids stagnation point flow towards an inclined cylindrical surface. The flow field is manifested with physical effects, namely thermal radiation, mixed convection, chemical reaction, temperature and concentration stratification, heat generation/absorption, magnetic field. The reduced system of ODEs is obtained by transforming flow narrating PDEs with the aid of appropriate transformation. A computational algorithm is executed to trace out the solution of an initial value problem. To be more specific, the effects of involved pertinent flow parameters are discussed for both \( \lambda\) = 0 (Newtonian fluid) and \( \lambda\) = 0.5 (non-Newtonian fluid). The non-Newtonian fluid reflects considerable variations towards flow parameters as compared to Newtonian fluid. Further, the compatibility of endpoint conditions is validated by providing stream lines pattern towards the velocities ratio parameter. In addition, the influence of Brownian motion and thermophoresis parameters are reported on mass and heat transfer rates by way of both straight line and parabolic curve fitting schemes. It is concluded that the heat transfer rate normal to the cylindrical surface is a decreasing function of both thermophoresis and Brownian motion parameters while the mass transfer rate admits inciting trends towards the Brownian motion parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.V. Williamson, Ind. Eng. Chem. 21, 1108 (1929)

    Article  Google Scholar 

  2. D.V. Lyubimov, A.V. Perminov, J. Eng. Phys. Thermophys. 75, 920 (2002)

    Article  Google Scholar 

  3. I. Dapra, G. Scarpi, Int. J. Rock Mech. Mining Sci. 44, 271 (2007)

    Article  Google Scholar 

  4. S. Nadeem, S. Akram, Commun. Nonlinear Sci. Num. Simul. 15, 1705 (2010)

    Article  Google Scholar 

  5. K. Vajravelu, S. Sreenadh, K. Rajanikanth, C. Lee, Nonlinear Anal. Real World Appl. 13, 2804 (2012)

    Article  MathSciNet  Google Scholar 

  6. S. Nadeem, S.T. Hussain, C. Lee, Braz. J. Chem. Eng. 30, 619 (2013)

    Article  Google Scholar 

  7. S. Nadeem, S.T. Hussain, Appl. Nanosci. 4, 1005 (2014)

    Article  Google Scholar 

  8. N.S. Akbar, S.U. Rahman, R. Ellahi, S. Nadeem, Eur. Phys. J. Plus 129, 256 (2014)

    Article  Google Scholar 

  9. I. Zehra, M.M. Yousaf, S. Nadeem, Results Phys. 5, 20 (2015)

    Article  ADS  Google Scholar 

  10. T. Hayat, A. Shafiq, A. Alsaedi, Alex. Eng. J. 55, 2229 (2016)

    Article  Google Scholar 

  11. M.Y. Malik, M. Bibi, F. Khan, T. Salahuddin, AIP Adv. 6, 035101 (2016)

    Article  ADS  Google Scholar 

  12. M.R. Krishnamurthy, B.C. Prasannakumara, B.J. Gireesha, R.S.R. Gorla, Eng. Sci. Tech. Int. J. 19, 53 (2016)

    Article  Google Scholar 

  13. N.T. Eldabe, M.A. Elogail, S.M. Elshaboury, A.A. Hasan, Appl. Math. Model. 40, 315 (2016)

    Article  MathSciNet  Google Scholar 

  14. T. Hayat, G. Bashir, M. Waqas, A. Alsaedi, J. Mol. Liq. 223, 836 (2016)

    Article  Google Scholar 

  15. M.M. Bhatti, M.M. Rashidi, J. Mol. Liq. 221, 567 (2016)

    Article  Google Scholar 

  16. S. Bilal, K.U. Rehman, M.Y. Malik, Results Phys. 7, 690 (2017)

    Article  ADS  Google Scholar 

  17. K. Ahmad, Z. Hanouf, A. Ishak, Eur. Phys. J. Plus 132, 87 (2017)

    Article  Google Scholar 

  18. G. Kumaran, N. Sandeep, J. Mol. Liq. 233, 262 (2017)

    Article  Google Scholar 

  19. M. Ramzan, M. Bilal, J.D. Chung, J. Mol. Liq. 225, 856 (2017)

    Article  Google Scholar 

  20. K.U. Rehman, A.A. Khan, M.Y. Malik, U. Ali, M. Naseer, Chin. J. Phys. 55, 1637 (2017)

    Article  Google Scholar 

  21. C.C. Chen, R. Eichhorn, J. Heat Transf. 98, 446 (1976)

    Article  Google Scholar 

  22. C.C. Chen, R. Eichhorn, J. Heat Transf. 101, 566 (1979)

    Article  Google Scholar 

  23. A.K. Kulkarni, H.R. Jacobs, J.J. Hwang, Int. J. Heat Mass Transfer 30, 691 (1987)

    Article  Google Scholar 

  24. D. Angirasa, G.P. Peterson, Int. J. Heat Mass Transfer 40, 4329 (1997)

    Article  Google Scholar 

  25. A. Ishak, R. Nazar, I. Pop, Int. J. Heat Mass Transfer 51, 3693 (2008)

    Article  Google Scholar 

  26. S. Mukhopadhyay, I.C. Mondal, R.S.R. Gorla, Heat Mass Transf. 48, 915 (2012)

    Article  ADS  Google Scholar 

  27. W. Ibrahim, O.D. Makinde, Comput. Fluids 86, 433 (2013)

    Article  MathSciNet  Google Scholar 

  28. T. Hayat, T. Hussain, S.A. Shehzad, A. Alsaedi, PLoS ONE 9, 107858 (2014)

    Article  ADS  Google Scholar 

  29. S.R. Mishra, P.K. Pattnaik, G.C. Dash, Alex. Eng. J. 54, 681 (2015)

    Article  Google Scholar 

  30. S.U.S. Choi, J.A. Eastman, Mater. Sci. 231, 99 (1995)

    Google Scholar 

  31. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phy. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  32. S.E.B. Maiga, S.J. Palm, C.T. Nguyen, G. Roy, N. Galanis, Int. J. Heat Fluid Flow 26, 530 (2005)

    Article  Google Scholar 

  33. H.U. Kang, S.H. Kim, J.M. Oh, Exp. Heat Transf. 19, 181 (2006)

    Article  ADS  Google Scholar 

  34. Wang, X. Qi, A.S. Mujumdar, Braz. J. Chem. Eng. 25, 613 (2008)

    Article  Google Scholar 

  35. M.J. Babu, N. Sandeep, Adv. Powder Technol. 27, 2039 (2016)

    Article  Google Scholar 

  36. O. Pourmehran, M.R. Gorji, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 162 (2016)

    Article  Google Scholar 

  37. M.R. Hajmohammadi, J. Mol. Liq. 240, 45 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Ur Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur Rehman, K., Malik, M.Y., Makinde, O.D. et al. A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium. Eur. Phys. J. Plus 132, 427 (2017). https://doi.org/10.1140/epjp/i2017-11679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11679-1

Navigation