Skip to main content
Log in

Electromagnetic transitions of the Roper resonance \(\gamma^{\ast} p \rightarrow p_{11}(1440)\) within the nonrelativistic quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The Roper resonance, or (\( \gamma^{\ast}p \rightarrow p_{11} (1440)\)), is the lowest excited state of the nucleon. We study the scalar and transverse helicity amplitudes for the electroexcitation of the Roper resonance and obtain the \( Q^{2}\) dependence of the helicity amplitudes of the Roper resonance. The helicity amplitudes depend strongly on the quark wave function. In this paper, we consider the baryon as a simple, nonrelativistic three-body quark model and we also consider a hypercentral potential scheme for the internal baryon structure which makes three-body forces among three quarks. The hypercentral potential depends only on the hyperradius which itself is a function of Jacobi relative coordinates that are functions of particle positions (\( r_{1}\), \( r_{2}\), and \( r_{3}\)). For this purpose, the Cornell potential is regarded as a combination of the Coulombic-like term plus a linear confining term in our work. In solving the Schrödinger equation with the Cornell potential, the Nikiforov-Uvarov (NU) method is employed, and the analytic eigenenergies and eigenfunctions are obtained. By using the obtained eigenfunctions, the transition amplitudes are calculated. Presenting our results in the range \( 0\le Q^{2} (GeV^{2}) \le 5\) in comparison with the predictions obtained in other non-relativistic quark models, our results lead to an overall better agreement with the experimental data, especially in the medium \( Q^{2}\) range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.D. Burkert, T.S.H. Lee, Int. J. Mod. Phys. E 13, 108 (2004)

    Article  Google Scholar 

  2. L. Zhenping, D. Yubing, M. Weihsing, J. Phys. G 23, 151 (1997)

    Article  ADS  Google Scholar 

  3. I.G. Aznauryan, V.D. Burkert, JLAB-PHY-11-1409

  4. I.G. Aznauryan et al., Phys. Rev. C 78, 045209 (2008)

    Article  ADS  Google Scholar 

  5. T. Kubota, K. Ohta, Phys. Lett. B 65, 374 (1976)

    Article  ADS  Google Scholar 

  6. S. Capstick, Phys. Rev. D 46, 46 (1992)

    Google Scholar 

  7. S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995)

    Article  ADS  Google Scholar 

  8. E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012) and references quoted therein

    Article  ADS  Google Scholar 

  9. F. Cardarelli, E. Pace, G. Salm, S. Simula, Phys. Lett. B 397, 13 (1997) and references quoted therein

    Article  ADS  Google Scholar 

  10. Z.P. Li, Phys. Rev. D 44, 2841 (1991)

    Article  ADS  Google Scholar 

  11. F.E. Close, An Introduction to Quarks and Partons (Academic Press, New York, 1978)

  12. Z.P. Li, V. Burkert, Zh. Li, Phys. Rev. D 46, 70 (1992)

    Article  ADS  Google Scholar 

  13. S. Capstick, G. Karl, Phys. Rev. D 41, 2768 (1990)

    ADS  Google Scholar 

  14. J.J. Kelly et al., Phys. Rev. C 75, 025201 (2007)

    Article  ADS  Google Scholar 

  15. M. Aiello, M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, Phys. Lett. B 387, 215 (1996)

    Article  ADS  Google Scholar 

  16. I.G. Aznauryan, Phys. Rev. C 75, 025201 (2007) and references quoted therein

    Google Scholar 

  17. S.J. Brodsky, S.D. Drell, Phys. Rev. D 22, 2236 (1980)

    Article  ADS  Google Scholar 

  18. S. Simula, Proceedings of the Workshop on the Physics of Excited Nucleons, NSTAR 2001, Mainz (Germany), March 7-10 (World Scientific, Singapore, 2001) p. 135

  19. B. Julía-Díaz, D.O. Riska, F. Coester, Phys. Rev. C 69, 035212 (2004)

    Article  ADS  Google Scholar 

  20. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. 236, 69 (1994)

    Article  ADS  Google Scholar 

  21. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000)

    Article  ADS  Google Scholar 

  22. P. Stoler, Phys. Rep. 226, 103 (1993)

    Article  ADS  Google Scholar 

  23. M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 25, 241 (2005)

    Article  ADS  Google Scholar 

  24. M. Aiello, M.M. Giannini, E. Santopinto, J. Phys. G: Nucl. Part. Phys. 24, 753 (1998)

    Article  ADS  Google Scholar 

  25. L.A. Copley, G. Karl, E. Obryk, Nucl. Phys. B 13, 303 (1969)

    Article  ADS  Google Scholar 

  26. R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971)

    Article  ADS  Google Scholar 

  27. F.E. Close, Z. Li, Phys. Rev. D 42, 9 (1990)

    Google Scholar 

  28. Z. Dziembowski, M. Fabre de la Ripelle, G.A. Miller, Phys. Rev. C 53, R2038 (1996)

    Article  ADS  Google Scholar 

  29. The CLAS Collaboration (I.G. Aznauryan, V.D. Burkert), Phys. Rev. C 80, 055203 (2009)

    Article  Google Scholar 

  30. M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991)

    Article  ADS  Google Scholar 

  31. G.S. Bali et al., Phys. Rev. D 62, 054503 (2000)

    Article  ADS  Google Scholar 

  32. G.S. Bali, Phys. Rep. 343, 1 (2001)

    Article  ADS  Google Scholar 

  33. C. Alexandrou, P. de Forcrand, O. Jahn, Nucl. Phys. Proc. Suppl. 119, 667 (2003)

    Article  ADS  Google Scholar 

  34. M. Fabre de la Ripelle, Proceedings of the International School on Nuclear Theoretical Physics (Predeal 1969), edited by A. Corciovei, (Inst. Atom. Phys., Bucarest, 1969) Rev. Roum. Phys. 14, 1215 (1969)

  35. M. Fabre de la Ripelle, Few-Body Syst. 14, 1 (1993)

    Article  ADS  Google Scholar 

  36. G. Morpurgo, Nuovo Cimento C 9, 461 (1952)

    Article  MathSciNet  Google Scholar 

  37. Yu.A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966)

    Google Scholar 

  38. J. Ballot, M. Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980)

    Article  ADS  Google Scholar 

  39. M. Fabre de la Ripelle, J. Navarro, Ann. Phys. (N.Y.) 123, 185 (1979)

    Article  ADS  Google Scholar 

  40. A.M. Badalyan, Phys. Lett. B 199, 267 (1987)

    Article  ADS  Google Scholar 

  41. E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998)

    Article  ADS  Google Scholar 

  42. M.M. Giannini, E. Santopinto, A. Vassallo, Nucl. Phys. A 699, 308 (2002)

    Article  ADS  Google Scholar 

  43. A.A. Rajabi, Indian J. Pure Appl. Phys. 41, 89 (2003)

    Google Scholar 

  44. D. Griffits, Introduction to Elementary Particles (John Wiley&Sons, New York, 1987)

  45. L.Ya. Glozman, D.O. Riska, Phys. Rep. C 268, 263 (1996)

    Article  ADS  Google Scholar 

  46. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Bassel, 1988)

  47. S.M. Ikhdair, Int. J. Mod. Phys. C 20, 1563 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Berkdemir, A. Berkdemir, R. Sever, Phys. Rev. C 74, 039902(E) (2006)

    Article  ADS  Google Scholar 

  49. S.M. Ikhdair, R. Sever, Int. J. Theor. Phys. 46, 1643 (2007)

    Article  Google Scholar 

  50. Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  51. K.S. Krane, Introduction to Nuclear Physics (John Wiley&Sons, New York, 1995)

  52. F. Halzen, A.D. Martin, Quarks and Leptons (John Wiley & Sons, New York, 1984)

  53. F. Gürsey, L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  54. R.M. Barnett et al., Phys. Rev. D 54, 174 (1996)

    Article  Google Scholar 

  55. N. Salehi, A.A. Rajabi, Mod. Phys. Lett. A 24, 2631 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Parsaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsaei, S., Akbar Rajabi, A. Electromagnetic transitions of the Roper resonance \(\gamma^{\ast} p \rightarrow p_{11}(1440)\) within the nonrelativistic quark model. Eur. Phys. J. Plus 132, 413 (2017). https://doi.org/10.1140/epjp/i2017-11676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11676-4

Navigation