Skip to main content
Log in

A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast which are inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role in merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multiparametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics, a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5mm FWHM and efficiency of a factor 2 with respect to what was obtained with the conventional PET scanner. In our experimental studies, we have obtained a timing resolution of ∼ 320 ps FWHM and at the same time a Depth of Interaction (DOI) resolution of under 1mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Kelloff, Am. J. Roentgenol. 192, 1455 (2009)

    Article  Google Scholar 

  2. Nicholas Mottet et al., Urology 71, 618 (2017)

    Google Scholar 

  3. M. Minhaj Siddiqui, Peter A. Pinto, Eur. Urol. 64, 713 (2013)

    Article  Google Scholar 

  4. Massimo Valerio et al., Urol. Oncol. 32, 924 (2014)

    Article  Google Scholar 

  5. M.E. Phelps, Proc. Natl. Acad. Sci. U.S.A. 97, 9226 (2000)

    Article  ADS  Google Scholar 

  6. A. Wetter, Int. J. Mol. Sci. 15, 13401 (2014)

    Article  Google Scholar 

  7. S. Isebaert et al., J. Magn. Reson. Imaging 37, 1392 (2012)

    Article  Google Scholar 

  8. W.W. Moses, IEEE Trans. Nucl. Sci. 50, 1325 (2003)

    Article  ADS  Google Scholar 

  9. J.S. Karp et al., J. Nucl. Med. 49, 462 (2008)

    Article  Google Scholar 

  10. J.S. Huber, W.S. Choong, W.W. Moses, J. Qi, J. Hu, Characterization of a PET camera optimized for prostate imaging, in 2005 IEEE Nuclear Science Symposium Conference Record, Vols. 1-5 (2005) pp. 1556-9

  11. J.S. Huber, W.S. Choong, W.W. Moses, J. Qi, J. Hu et al., IEEE Trans. Nucl. Sci. 53, 2653 (2006)

    Article  ADS  Google Scholar 

  12. http://www.iss.infn.it/congresso/prostate/index.html

  13. S.S. Huh, N.H. Clinthorne, W.L. Rogers, Nucl. Instrum. Methods Phys. Res. A 579, 339 (2006)

    Article  ADS  Google Scholar 

  14. N.H. Clinthorne, D. Meier, C. Hua et al., J. Nucl. Med. Suppl. 41, 20 (2000)

    Google Scholar 

  15. S.J. Park, W.L. Rogers, S.J. Wilderman et al., J. Nucl. Med. Suppl. 42, 55 (2001)

    Google Scholar 

  16. N.H. Clinthorne, S.J. Park, S.J. Wilderman et al., J. Nucl. Med. Suppl. 42, 102 (2001)

    Google Scholar 

  17. S.J. Park, W.L. Rogers, N.H. Clinthorne, Phys. Med. Biol. 52, 4653 (2007)

    Article  Google Scholar 

  18. Y.C. Tai, H. Wu, D. Pal et al., J. Nucl. Med. 49, 471 (2008)

    Article  Google Scholar 

  19. H. Wu, D. Pal, T.Y. Song et al., J. Nucl. Med. 49, 1668 (2008)

    Article  Google Scholar 

  20. H. Wu, D. Pal, O’Sullivan et al., J. Nucl. Med. 49, 79 (2008)

    Article  Google Scholar 

  21. Alexander V. Stolin, Stan Majewski, IEEE Trans. Nucl. Sci. 60, 82 (2013)

    Article  ADS  Google Scholar 

  22. K. Brzeziński, J.F. Oliver, J. Gillam, M. Rafecas, Phys. Med. Biol. 59, 6117 (2014)

    Article  Google Scholar 

  23. Aswin John Mathews, Sergey Komarov, Heyu Wu, Joseph A. O’Sullivan, Yuan-Chuan Tai, Phys. Med. Biol. 58, 6407 (2013)

    Article  Google Scholar 

  24. Milan Grkovski, Karol Brzezinski, Vladimir Cindro, Neal H. Clinthorne, Harris Kagan, Carlos Lacasta, Marko Mikuž, Carles Solaz, Andrej Studen Peter Weilhammer, Dejan Zontar, Nucl. Instrum. Methods Phys. Res. A 788, 86 (2015)

    Article  ADS  Google Scholar 

  25. Jian Zhou, Jinyi Qi, Phys. Med. Biol. 54, 5193 (2009)

    Article  Google Scholar 

  26. F. Garibaldi et al., Nucl. Instrum. Methods A 702, 13 (2013)

    Article  ADS  Google Scholar 

  27. I.G. Zubal, C.R. Harrell, E.O. Smith, Z. Rattner, G. Gindi, P.B. Hoffer, Med. Phys. 21, 299 (1994)

    Article  Google Scholar 

  28. Sara St James, Simon R. Cherry, Phys. Med. Biol. 55, N63 (2010)

    Article  ADS  Google Scholar 

  29. Surti, J. Karp, Phys. Med. Biol. 53, 2911 (2008)

    Article  Google Scholar 

  30. L. Cosentino, P. Finocchiaro, A. Pappalardo, F. Garibaldi, Rev. Sci. Instrum. 83, 114301 (2012)

    Article  ADS  Google Scholar 

  31. J.S. Huber, W.W. Moses, M.S. Andreaco, O. Petterson, IEEE Trans. Nucl. Sci. 48, 684 (2001)

    Article  ADS  Google Scholar 

  32. Manuel D. Rolo, Ricardo Bugalho, Fe ando Gon alves, Angelo Rivetti, Giovanni Mazza, Jose C. Silva, Rui Silva, Joao Varela, A 64-channel ASIC for TOFPET applications, in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (IEEE, 2012)

  33. M.D. Rolo, JINST 8, C02050 (2013)

    Article  Google Scholar 

  34. M.V. Nemallapudi, S. Gundacker, P. Lecoq, E. Auffray, A. Ferri, A. Gola, C. Piemonte, Phys. Med. Biol. 00, 1 (2015)

    Google Scholar 

  35. M.R. Engelbrecht, G.J. Jager, R.J. Laheij, A.L. Verbeek, H.J. Van Lier, J.O. Barentsz, Eur. Radiol. 12, 2294 (2002)

    Article  Google Scholar 

  36. J.J. Fütterer, M.R. Engelbrecht, G.J. Jager et al., Eur. Radiol. 17, 1055 (2007)

    Article  Google Scholar 

  37. B. Turkbey, M.J. Merino, E.C. Gallardo et al., J. Magn. Reson. Imaging 39, 1443 (2014)

    Article  Google Scholar 

  38. Bratan, E. Niaf, C. Melodelima et al., Eur. Radiol. 23, 2019 (2013)

    Article  Google Scholar 

  39. C.S. Arteaga de Castro et al., Magn. Reson. Med. 68, 311 (2012)

    Article  Google Scholar 

  40. J. Nuyts, University of Leuven, private communication

  41. J. Brown, Univeristy of Halifax, private communication

  42. A. Rivetti, private communication

  43. V. Puill et al., Nucl. Instrum. Methods A 695, 354 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Garibaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garibaldi, F., Beging, S., Canese, R. et al. A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer. Eur. Phys. J. Plus 132, 396 (2017). https://doi.org/10.1140/epjp/i2017-11662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11662-x

Navigation