Skip to main content
Log in

Multiconfiguration Dirac-Hartree-Fock energy levels, oscillator strengths, transition probabilities, hyperfine constants and Landé g-factor of intermediate Rydberg series in neutral argon atom

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We computed the energy levels, oscillator strengths \(f_{ij}\), the radiative transition rates \(A_{ij}\), the Landé g -factor, the magnetic dipole moment and the electric quadrupole hyperfine constants of the intermediate Rydberg series \(n{\rm s}\) \([k]_{J}\) (\( 4 \le n \le 6\)), \(n{\rm d}\) \( [k]_{J}\) (\(3 \le n \le 4\)), \(n{\rm p}\) \([k]_{J}\) (\(4 \le n \le 5\)) relative to the ground state 3p6 1S0 for neutral argon atom spectra. The values are obtained in the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) approach. In this approach, Breit interaction, leading quantum electrodynamics (QED) effects and self-energy correction are taken into account. Moreover, these spectroscopic parameters have been calculated for many levels belonging to the configuration 3p54s, 3p55s, 3p56s, 3p53d, 3p54d, 3p54p, 3p55p as well as for transitions between levels 3p54s-3p54p, 3p54p-3p53d, 3p54p-3p55s, 3p55s-3p55p and 3p55p-3p56s. The large majority of the lines from the 4p-5s and 4p-3d, 5s-5p and 5p-6s transition arrays have been observed and the calculations are consistent with the J -file-sum rule. The obtained theoretical values are compared with previous experimental and theoretical data available in the literature. An overall satisfactory agreement is noticed allowing assessing the reliability of our data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xin Xu et al., J. Phys. B 49, 064010 (2016)

    Article  ADS  Google Scholar 

  2. I.D. Petrov et al., J. Phys. B 36, 119 (2003)

    Article  ADS  Google Scholar 

  3. A. Dasgupta et al., Phys. Rev. A 61, 012703 (1999)

    Article  ADS  Google Scholar 

  4. J.W. Coburn, M. Chen, J. Appl. Phys. 51, 3134 (1980)

    Article  ADS  Google Scholar 

  5. S.A. Levshakov et al., Astron. Astrophys. 373, 836 (2001)

    Article  ADS  Google Scholar 

  6. S. Lopez et al., Astron. Astrophys. 385, 778 (2002)

    Article  ADS  Google Scholar 

  7. I. Santiago, M.D. Calzada, Appl. Spectrosc. 61, 725 (2007)

    Article  ADS  Google Scholar 

  8. M. Akel et al., J. Fusion Energy 32, 350 (2013)

    Article  ADS  Google Scholar 

  9. J. Kuba et al., J. Opt. Soc. Am. B 20, 609 (2003)

    Article  ADS  Google Scholar 

  10. L. Masoudnia, Phys. Plasmas 23, 043108 (2016)

    Article  ADS  Google Scholar 

  11. A.A. Lutman et al., Phys. Rev. Lett. 110, 134801 (2013)

    Article  ADS  Google Scholar 

  12. K. Yoshino, J. Opt. Soc. Am. 60, 1220 (1970)

    Article  ADS  Google Scholar 

  13. G. Racah, Phys. Rev. 62, 438 (1942)

    Article  ADS  Google Scholar 

  14. W. Salah, Nucl. Instrum. Methods B 196, 25 (2002)

    Article  ADS  Google Scholar 

  15. M. Pellarin et al., J. Phys. B 21, 3833 (1988)

    Article  ADS  Google Scholar 

  16. L. Minnhagen, J. Opt. Soc. Am. 63, 1185 (1973)

    Article  ADS  Google Scholar 

  17. G.H. Copley, D.M. Camm, J. Quant. Spectrosc. Radiat. Transf. 14, 899 (1974)

    Article  ADS  Google Scholar 

  18. O. Vallee et al., J. Quant. Spectrosc. Radiat. Transf. 18, 327 (1977)

    Article  ADS  Google Scholar 

  19. W. Westerveld et al., J. Quant. Spectrosc. Radiat. Transf. 18, 533 (1979)

    Article  ADS  Google Scholar 

  20. D. Chornay et al., J. Phys. B 17, 3173 (1984)

    Article  ADS  Google Scholar 

  21. S. Federman et al., Astrophys. J. 401, 367 (1992)

    Article  ADS  Google Scholar 

  22. S. Wu et al., Phys. Rev. A 51, 4494 (1995)

    Article  ADS  Google Scholar 

  23. R.C.G. Ligtenberg et al., Phys. Rev. 49, 2363 (1994)

    Article  ADS  Google Scholar 

  24. N.D. Gibson, J.S. Risley, Phys. Rev. A 52, 4451 (1995)

    Article  ADS  Google Scholar 

  25. M.C.E Huber, R.J. Sandeman, Rep. Prog. Phys. 49, 397 (1986)

    Article  ADS  Google Scholar 

  26. D.N. Stacey, J.M. Vaughan, Phys. Lett. 11, 105 (1964)

    Article  ADS  Google Scholar 

  27. T. Sawada et al., Phys. Rev. A 4, 193 (1971)

    Article  ADS  Google Scholar 

  28. C.M. Lee, K.T. Lu, Phys. Rev. A 8, 1241 (1973)

    Article  ADS  Google Scholar 

  29. C.M. Lee, Phys. Rev. A 10, 584 (1974)

    Article  ADS  Google Scholar 

  30. D.L. Lin et al., Phys. Rev. A 16, 589 (1977)

    Article  ADS  Google Scholar 

  31. E.N. Avgoustoglou, D.R. Beck, Phys. Rev. A 57, 4286 (1988)

    Article  ADS  Google Scholar 

  32. I.M. Savukov, J. Phys. B 36, 2001 (2003)

    Article  ADS  Google Scholar 

  33. I. Irimia, C. Fischer, J. Phys. B 37, 1659 (2004)

    Article  ADS  Google Scholar 

  34. D.J. Chornay et al., J. Phys. B 17, 3173 (1984)

    Article  ADS  Google Scholar 

  35. I.M. Savukov, H.G. Berry, Phys. Rev. A 67, 032505 (2003)

    Article  ADS  Google Scholar 

  36. M. Chenevier, P.A. Moskowitz, J. Phys. B 35, 401 (1974)

    Google Scholar 

  37. M. Aymar, M.G. Schweighofer, Physica 67, 585 (1973)

    Article  ADS  Google Scholar 

  38. NIST atomic spectra database, http://physics.nist.gov/cgi-bin/AtData/main asd

  39. X. Husson, J.P. Grandin, J. Phys. B 11, 1393 (1978)

    Article  ADS  Google Scholar 

  40. G. Binet, X. Husson, J.P. Grandin, J. Phys. Lett. 44, 151 (1983)

    Article  Google Scholar 

  41. H. Abu Safia et al., J. Phys. B 14, 3363 (1981)

    Article  ADS  Google Scholar 

  42. A. Messiah, Quantum Mechanics, Vol. 2 (North Holland Publishing Co., Amsterdam, 1965) p. 927

  43. I.P. Grant, J. Phys. B 7, 145 (1974)

    Article  Google Scholar 

  44. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California, Berkeley, CA, 1981)

  45. J.D. Jackson, Am. J. Phys. 70, 917 (2002)

    Article  ADS  Google Scholar 

  46. G.S. Adkins, Phys. Rev. D 36, 1929 (1987)

    Article  ADS  Google Scholar 

  47. F.A. Babushkin, Opt. Spectrosc. 13, 77 (1962)

    ADS  Google Scholar 

  48. F.A. Babushkin, Acta Phys. Pol. 25, 749 (1964)

    Google Scholar 

  49. F.A. Babushkin, Opt. Spectrosc. 19, 1 (1965)

    Article  ADS  Google Scholar 

  50. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1996)

  51. A.J. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics (Interscience, New York, 1965) Chapt. 8, Sect. 50.2

  52. N.C. Pyper, I.P. Grant, N. Beatham, Comput. Phys. Commun. 15, 387 (1978)

    Article  ADS  Google Scholar 

  53. I. Lindgren, A. Rosen, Case Stud. At. Phys. 4, 93 (1975)

    Article  Google Scholar 

  54. I. Lindgren, A. Rosen, Case Stud. At. Phys. 4, 197 (1975)

    Article  Google Scholar 

  55. J.P. Declaux, Comput. Phys. Commun. 9, 31 (1975)

    Article  ADS  Google Scholar 

  56. C. Fischer, Phys. Scr. T 134, 014019 (2009)

    Article  ADS  Google Scholar 

  57. J. Ekman et al., Atoms 2, 215 (2014)

    Article  ADS  Google Scholar 

  58. P. Jönsson et al., Comput. Phys. Commun. 184, 2197 (2013)

    Article  ADS  Google Scholar 

  59. C. Froese Fischer, Comput. Phys. Commun. 1, 151 (1969)

    Article  ADS  Google Scholar 

  60. E.R. Davidson, J. Comput. Phys. 17, 87 (1975)

    Article  ADS  Google Scholar 

  61. M. Aymar, Physica 57, 178 (1971)

    Article  ADS  Google Scholar 

  62. R.M. Sternheimer, Phys. Rev. 146, 140 (1966)

    Article  ADS  Google Scholar 

  63. R.M. Sternheimer, Phys. Rev. 164, 10 (1967)

    Article  ADS  Google Scholar 

  64. C. Froese Fischer Computational Atomic Structure (Institute of Physics Publishing, Bristol, 1997) p. 10

    Article  Google Scholar 

  65. C. Froese Fischer, X. He, Can. J. Phys. 77, 177 (1999)

    Article  ADS  Google Scholar 

  66. G. Tachiev, C. Fischer, J. Phys. B 32, 5808 (1999)

    Article  ADS  Google Scholar 

  67. C. Froese Fischer et al., At. Data Nucl. Data Tables 92, 607 (2006)

    Article  ADS  Google Scholar 

  68. M. Aymar et al., Nucl. Instrum. Methods 90, 137 (1970)

    Article  ADS  Google Scholar 

  69. W.L. Wiese, Atomic Transition Probabilities, Volume II, Sodium through Calcium, NSRDS-NB 22 (Govt. Printing Office, Washinton D.C., 1969)

  70. R.S. Knox, Phys. Rev. A 128, 375 (1958)

    Article  Google Scholar 

  71. W.F. Chan et al., Phys. Rev. A 46, 149 (1992)

    Article  ADS  Google Scholar 

  72. S. Tsurubuchi et al., J. Phys. Soc. Jpn. 59, 497 (1990)

    Article  ADS  Google Scholar 

  73. G. Takayanagi et al., Phys. Rev. A 38, 1240 (1988)

    Article  ADS  Google Scholar 

  74. N. Avgoustoglou et al., Phys. Rev. A 57, 4286 (1988)

    Article  ADS  Google Scholar 

  75. U. Hahn, N. Schwentner, Chem. Phys. 48, 53 (1980)

    Article  ADS  Google Scholar 

  76. S.R. Federman et al., Astrophys. J. 401, 367 (1992)

    Article  ADS  Google Scholar 

  77. D. Lang, 6th International Colloquium On Atomic Spectra and Oscillator Strengths, edited by J.B. Tatum (University of Victoria, Victoria, 1998) p. 90

  78. J. Geiger, Phys. Lett. A 33, 351 (1970)

    Article  ADS  Google Scholar 

  79. O. Zatsarinny, K. Bartschat, J. Phys. B 39, 2145 (2006)

    Article  ADS  Google Scholar 

  80. G.M. Lawrence, Phys. Rev. 175, 40 (1968)

    Article  ADS  Google Scholar 

  81. W.L. Wiesse, Atomic Transition Probabilities, Volume I, NSRDS. NBS 22 (Govt. Printing Office, Washinton D.C., 1966)

  82. R.L. Burnham, R.C. Isler, Bull. Am. Phys. Soc. 15, 213 (1970)

    Google Scholar 

  83. D.J.G. Irwin et al., Nucl. Instrum. Methods 110, 111 (1973)

    Article  ADS  Google Scholar 

  84. E.L. Lewis, Proc. Phys. Soc. 92, 817 (1967)

    Article  ADS  Google Scholar 

  85. W.L. Wiesse et al., Phys. Rev. 39, 2461 (1989)

    Article  ADS  Google Scholar 

  86. R.S.F. Chang, D.W. Setser, J. Chem. Phys. 64, 3885 (1978)

    Article  ADS  Google Scholar 

  87. R.A. Lilly, J. Opt. Soc. Am. 66, 245 (1976)

    Article  ADS  Google Scholar 

  88. K. Musiol et al., J. Quant. Spectrosc. Radiat. Transf. 29, 321 (1983)

    Article  ADS  Google Scholar 

  89. J.B. Shumaker Jr., C.H. Ponenoe, J. Opt. Soc. Am. 57, 8 (1967)

    Article  ADS  Google Scholar 

  90. M. Aymar, M.G.M. Coulombe, At. Data Nucl. Data Tables 21, 537 (1978)

    Article  ADS  Google Scholar 

  91. R. Kurucz, http://Kurucz.havard.edu/atoms/1800/life1800.dat

  92. H. Abu Safia, J. Margerie, J. Phys. B 16, 927 (1983)

    Article  ADS  Google Scholar 

  93. C.E. Moore, Atomic Energy Levels, NBS Circular No. 467, Volume I (US Govt Printing Office, Washinton, DC, 1949)

  94. C.E. Moore, Atomic Energy Levels, NBS Circular No. 467, Volume 2 (US Govt Printing Office, Washinton, DC, 1952)

  95. C.E. Moore, Atomic Energy Levels, NBS Circular No. 467, Volume I (US Govt Printing Office, Washinton, DC, 1959)

  96. S. Liberman, J. Phys. (Paris) 30, 53 (1969)

    Article  Google Scholar 

  97. S. Liberman, Physica 69, 598 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wa’el Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, W., Hassouneh, O. Multiconfiguration Dirac-Hartree-Fock energy levels, oscillator strengths, transition probabilities, hyperfine constants and Landé g-factor of intermediate Rydberg series in neutral argon atom. Eur. Phys. J. Plus 132, 160 (2017). https://doi.org/10.1140/epjp/i2017-11436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11436-6

Navigation