Skip to main content
Log in

Bayes factor of the ATLAS diphoton excess: Using Bayes factors to understand anomalies at the LHC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

As an example of using Bayesian statistics in searches for new physics at the LHC, we present a calculation of Bayes factors for the erstwhile digamma resonance (\(\digamma\)) versus the SM in light of ATLAS 8 TeV 20.3/fb, 13 TeV 3.2/fb and 13 TeV 15.4/fb data. We matched, wherever possible, parameterisations in the ATLAS analysis. We calculated that the plausibility of the \(\digamma\) versus the Standard Model increased by about eight in light of the 8 TeV 20.3/fb and 13 TeV 3.2/fb ATLAS data, somewhat justifying interest in \(\digamma\) models. All told, however, in light of 15.4/fb data, the \(\digamma\) was disfavoured by about 0.7. We argue that Bayes factors could play an important role in future anomalies by clarifying the plausibility of new physics and sidestepping look-elsewhere effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS Collaboration, Search for resonances decaying to photon pairs in 3.2 of $pp$ collisions at $\sqrt{s}=13$ with the ATLAS detector, Technical Report ATLAS-CONF-2015-081 (2015)

  2. M. Aaboud et al., JHEP 09, 001 (2016) arXiv:1606.03833

    Article  ADS  Google Scholar 

  3. CMS Collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at 13, Technical Report CMS-PAS-EXO-15-004 (2015)

  4. V. Khachatryan et al., Phys. Rev. Lett. 117, 051802 (2016) arXiv:1606.04093

    Article  ADS  Google Scholar 

  5. J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz, T. You, JHEP 03, 176 (2016) arXiv:1512.05327

    Article  ADS  Google Scholar 

  6. R. Franceschini, G.F. Giudice, J.F. Kamenik, M. McCullough, A. Pomarol, R. Rattazzi, M. Redi, F. Riva, A. Strumia, R. Torre, JHEP 03, 144 (2016) arXiv:1512.04933

    Article  ADS  Google Scholar 

  7. A. Strumia, Interpreting the 750 digamma excess: a review, arXiv:1605.09401

  8. L. Lyons, Discovering the Significance of 5 sigma, arXiv:1310.1284

  9. L. Lyons, Ann. Appl. Stat. 2, 887 (2008) arXiv:0811.1663

    Article  MathSciNet  Google Scholar 

  10. CMS Collaboration, Search for resonant production of high mass photon pairs using 12.9 of proton-proton collisions at $\sqrt{s}=13$ and combined interpretation of searches at 8 and 13, Technical Report CMS-PAS-EXO-16-027 (2016)

  11. ATLAS Collaboration, Search for scalar diphoton resonances with 15.4 fb-1 of data collected at $\sqrt{s}=13$ in 2015 and 2016 with the ATLAS detector, Technical Report ATLAS-CONF-2016-059 (2016)

  12. P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences (Cambridge University Press, 2005)

  13. R.E. Kass, A.E. Raftery, J. Am. Stat. Assoc. 90, 773 (1995)

    Article  Google Scholar 

  14. H. Jeffreys, The Theory of Probability (Oxford University Press, 1939)

  15. F. Feroz, M.P. Hobson, Mon. Not. R. Astron. Soc. 384, 449 (2008) arXiv:0704.3704

    Article  ADS  Google Scholar 

  16. F. Feroz, M.P. Hobson, M. Bridges, Mon. Not. R. Astron. Soc. 398, 1601 (2009) arXiv:0809.3437

    Article  ADS  Google Scholar 

  17. F. Feroz, M.P. Hobson, E. Cameron, A.N. Pettitt, Importance Nested Sampling and the MultiNest Algorithm, arXiv:1306.2144

  18. J. Skilling, Bayesian Anal. 1, 833 (2006)

    Article  MathSciNet  Google Scholar 

  19. J. Skilling, AIP Conf. Proc. 735, 395 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011) 73

    Article  ADS  Google Scholar 

  21. A. Fowlie, M.H. Bardsley, Eur. Phys. J. Plus 131, 391 (2016) arXiv:1603.00555

    Article  Google Scholar 

  22. M.S. Bartlett, Biometrika 44, 533 (1957)

    Article  Google Scholar 

  23. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003)

  24. J.O. Berger, L.R. Pericchi, Objective Bayesian Methods for Model Selection: Introduction and Comparison, Lecture Notes -- Monograph Series, Vol. 38 (Institute of Mathematical Statistics, Beachwood, OH, 2001) pp. 135--207

  25. R.E. Kass, L. Wasserman, J. Am. Stat. Assoc. 91, 1343 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Fowlie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowlie, A. Bayes factor of the ATLAS diphoton excess: Using Bayes factors to understand anomalies at the LHC. Eur. Phys. J. Plus 132, 46 (2017). https://doi.org/10.1140/epjp/i2017-11340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11340-1

Navigation