Skip to main content
Log in

Search for new exotic particles decaying to photons with the CMS experiment at the LHC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The results of searches for physics beyond the standard model with photons in the final state are presented. Events were collected at center-of-mass energies of 7 and 8 TeV in proton-proton collisions during the first run of the LHC data taking between 2011 and 2015 and analyzed with the general-purpose detector of the Compact Muon Solenoid experiment. A search for long-lived particles which decay to photons is first presented. This is the first search at CMS which exploits information of the time measurement made with the CMS electromagnetic calorimeter to identify displaced photons. A model-independent search for new heavy scalars in the diphoton final state is also described. The search, covering the mass range between 150 GeV and 850 GeV, is extended to resonances with natural width up to 10% of the mass. Results obtained in both searches significantly extend previous searches results in terms of mass, width and lifetime ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS Collaboration, J. Phys. G: Nucl. Part. Phys. 34, 995 (2007)

    Article  ADS  Google Scholar 

  2. CMS Collaboration, Phys. Lett. B 722, 273 (2013)

    Article  ADS  Google Scholar 

  3. CMS Collaboration, Phys. Lett. B 750, 494 (2015)

    Article  Google Scholar 

  4. Thomas Sven Pettersson, P. Lefvre, The Large Hadron Collider: conceptual design, Technical Report CERN-AC-95-05 LHC, CERN, Geneva, Oct. 1995

  5. CMS Collaboration, J. Phys. G: Nucl. Part. Phys. 34, 995 (2007)

    Article  ADS  Google Scholar 

  6. J. Beringer, J. Arguin, Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  7. A.A. Annenkov, M.V. Korzhik, P. Lecoq, Nucl. Instrum. Methods Phys. Res. Sect. A 490, 30 (2002)

    Article  ADS  Google Scholar 

  8. CMS Collaboration, JINST 10, P08010 (2015) arXiv:1502.02702, CMS-EGM-14-001, CERN-PH-EP-2015-006

    Article  Google Scholar 

  9. CMS Collaboration, JINST 5, T03011 (2010)

    ADS  Google Scholar 

  10. Serguei Chatrchyan et al., JHEP 07, 122 (2013)

    Article  ADS  Google Scholar 

  11. Matteo Cacciari, Gavin P. Salam, Phys. Lett. B 659, 119 (2008)

    Article  ADS  Google Scholar 

  12. Matthew J. Strassler, Kathryn M. Zurek, Phys. Lett. B 651, 374 (2007)

    Article  ADS  Google Scholar 

  13. G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999)

    Article  ADS  Google Scholar 

  14. Glennys R. Farrar, Pierre Fayet, Phys. Lett. B 76, 575 (1978)

    Article  ADS  Google Scholar 

  15. B.C. Allanach et al., Eur. Phys. J. C 25, 113 (2002)

    Article  ADS  Google Scholar 

  16. Savas Dimopoulos, Michael Dine, Stuart Raby, Scott D. Thomas, Phys. Rev. Lett. 76, 3494 (1996)

    Article  ADS  Google Scholar 

  17. ATLAS and CMS Collaborations, Procedure for the lhc higgs boson search combination in summer 2011, ATL-PHYS-PUB 2011-011 (2011) CMS NOTE-2011/005

  18. Thomas Junk, Nucl. Instrum. Methods A 434, 435 (1999)

    Article  Google Scholar 

  19. Alexander L. Read, J. Phys. G 28, 2693 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells, Eur. Phys. J. C 71, 1554 (2011)

    ADS  Google Scholar 

  21. Vardan Khachatryan et al., Eur. Phys. J. C 74, 3076 (2014)

    Article  Google Scholar 

  22. Georges Aad et al., Phys. Rev. D 90, 112015 (2014)

    Article  ADS  Google Scholar 

  23. Nathaniel Craig, Jamison Galloway, Scott Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 (2013)

  24. P.S. Bhupal Dev, Apostolos Pilaftsis, JHEP 12, 024 (2014)

    Article  ADS  Google Scholar 

  25. L.D. Landau, Dokl. Akad. Nauk. SSSR 60, 207 (1948)

    Google Scholar 

  26. Lisa Randall, Raman Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. Nima Arkani-Hamed, Savas Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  28. Serguei Chatrchyan et al., Phys. Lett. B 710, 403 (2012)

    Article  ADS  Google Scholar 

  29. Serguei Chatrchyan et al., JHEP 01, 133 (2012)

    Article  ADS  Google Scholar 

  30. Serguei Chatrchyan et al., Phys. Lett. B 700, 187 (2011)

    Article  ADS  Google Scholar 

  31. A.L. Read, J. Phys. G: Nucl. Part. Phys. 28, 2693 (2002)

    Article  ADS  Google Scholar 

  32. ATLAS and CMS Collaborations, LHC Higgs Combination Group, Procedure for the lhc higgs boson search combination in summer 2011, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005 (2011)

  33. M.J. Oreglia, A study of the reactions $\psi^{\prime} \rightarrow \gamma \gamma \psi$, PhD thesis, Stanford University (1980) SLAC Report SLAC-R-236, see appendix D

  34. S. Heinemeyer, Handbook of LHC Higgs cross sections: 3, Higgs properties, Technical report (2013)

  35. Vardan Khachatryan et al., Phys. Rev. Lett. 105, 211801 (2010)

    Article  ADS  Google Scholar 

  36. CMS Collaboration, CMS luminosity based on pixel cluster counting - summer 2013 update, CMS Physics Analysis Summary CMS-PAS-LUM-13-001 (2013)

  37. Robert V. Harlander, Stefan Liebler, Hendrik Mantler, Comput. Phys. Commun. 184, 1605 (2013)

    Article  ADS  Google Scholar 

  38. David Eriksson, Johan Rathsman, Oscar Stal, Comput. Phys. Commun. 181, 189 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Soffi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soffi, L. Search for new exotic particles decaying to photons with the CMS experiment at the LHC. Eur. Phys. J. Plus 131, 283 (2016). https://doi.org/10.1140/epjp/i2016-16283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16283-3

Navigation