Skip to main content
Log in

Lipkin-Meshkov-Glick model in a quantum Otto cycle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The Lipkin-Meshkov-Glick model of two anisotropically interacting spins in a magnetic field is proposed as a working substance of a quantum Otto engine to explore and exploit the anisotropy effects for the optimization of engine operation. Three different cases for the adiabatic branches of the cycle have been considered. In the first two cases, either the magnetic field or coupling strength are changed while, in the third case, both the magnetic field and the coupling strength are changed by the same ratio. The system parameters for which the engine can operate similar to or dramatically different from the engines of non-interacting spins or of coupled spins with Ising model or isotropic XY model interactions are determined. In particular, the role of anisotropy to enhance cooperative work, and to optimize maximum work with high efficiency, as well as to operate the engine near the Carnot bound are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E.D. Scovil, E.O. Schulz-Dubois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  2. H.T. Quan, Y.-X Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

    Article  ADS  Google Scholar 

  3. H.T. Quan, Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)

    Article  ADS  Google Scholar 

  6. R. Dillenschneider, E. Lutz, EPL 88, 50003 (2009)

    Article  Google Scholar 

  7. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  8. A.Ü.C. Hardal, Ö.E. Müstecaplioğlu, Sci. Rep. 5, 12953 (2015)

    Article  ADS  Google Scholar 

  9. X.L. Huang, X.Y. Niu, X.M. Xiu, X.X. Yi, Eur. Phys. J. D 68, 32 (2014)

    Article  ADS  Google Scholar 

  10. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  11. B.H. Lin, J.C. Chen, Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  12. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplioğlu, Phys. Rev. E 90, 032102 (2014)

    Article  ADS  Google Scholar 

  13. G. Thomas, R.S. Johal, Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  14. G.-F. Zhang, Eur. Phys. J. D 49, 123 (2008)

    Article  ADS  Google Scholar 

  15. X.L. Huang, L.C. Wang, X.X. Yi, Phys. Rev. E 87, 012144 (2013)

    Article  ADS  Google Scholar 

  16. T. Feldmann, R. Kosloff, Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  17. T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  18. X.L. Huang, H. Xu, X.Y. Niu, Y.D. Fu, Phys. Scr. 88, 065008 (2013)

    Article  ADS  Google Scholar 

  19. M.J. Henrich, G. Mahler, M. Michel, Phys. Rev. E 75, 051118 (2007)

    Article  ADS  Google Scholar 

  20. T. Zhang, W.-T. Liu, P.-X. Chen, C.-Z. Li, Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  21. G. Thomas, R.S. Johal, Eur. Phys. J. B 87, 166 (2014)

    Article  ADS  Google Scholar 

  22. X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  23. F. Wu, L. Chen, F. Sun, C. Wu, Q. Li, Phys. Rev. E 73, 016103 (2006)

    Article  ADS  Google Scholar 

  24. E.A. Ivanchenko, Phys. Rev. E 92, 032124 (2015)

    Article  ADS  Google Scholar 

  25. H. Wang, G. Wu, D. Chen, Phys. Scr. 86, 015001 (2012)

    Article  ADS  Google Scholar 

  26. X. He, J. He, J. Zheng, Physica A 391, 6594 (2012)

    Article  ADS  Google Scholar 

  27. X.L. Huang, Y. Liu, Z. Wang, X.Y. Niu, Eur. Phys. J. Plus 129, 4 (2014)

    Article  ADS  Google Scholar 

  28. H. Wang, S. Liu, J. He, Phys. Rev. E 79, 041113 (2009)

    Article  ADS  Google Scholar 

  29. W. Hubner, G. Lefkidis, C.D. Dong, D. Chaudhuri, L. Chotorlishvili, J. Berakdar, Phys. Rev. B 90, 024401 (2014)

    Article  ADS  Google Scholar 

  30. M. Azimi, L. Chotorlishvili, S.K. Mishra, T. Vekua, W. Hubner, J. Berakdar, New J. Phys. 16, 063018 (2014)

    Article  ADS  Google Scholar 

  31. E. Albayrak, Int. J. Quantum Inform. 11, 1350021 (2013)

    Article  MathSciNet  Google Scholar 

  32. J.-Z. He, X. He, J. Zheng, Int. J. Theor. Phys. 51, 2066 (2012)

    Article  Google Scholar 

  33. F. Altintas, Ö.E. Müstecaplioğlu, Phys. Rev. E 92, 022142 (2015)

    Article  ADS  Google Scholar 

  34. J. Ronagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  35. O. Abah, J. Ronagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  36. O. Fialko, D.W. Hallwood, Phys. Rev. Lett. 108, 085303 (2012)

    Article  ADS  Google Scholar 

  37. K. Zhang, F. Bariani, P. Meystre, Phys. Rev. Lett. 112, 150602 (2014)

    Article  ADS  Google Scholar 

  38. B. Sothmann, M. Büttiker, EPL 99, 27001 (2012)

    Article  ADS  Google Scholar 

  39. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 73, 036122 (2006)

    Article  ADS  Google Scholar 

  40. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplioğlu, Phys. Rev. A 91, 023816 (2015)

    Article  ADS  Google Scholar 

  41. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)

    Article  MathSciNet  Google Scholar 

  42. N. Meshkov, A.J. Glick, H.J. Lipkin, Nucl. Phys. 62, 199 (1965)

    Article  MathSciNet  Google Scholar 

  43. A.J. Glick, H.J. Lipkin, N. Meshkov, Nucl. Phys. 62, 211 (1965)

    Article  MathSciNet  Google Scholar 

  44. M.I. Heggie, M. Terrones, B.R. Eggen, G. Jungnickel, R. Jones, C.D. Latham, P.R. Briddon, H. Terrones, Phys. Rev. B 57, 13339 (1998)

    Article  ADS  Google Scholar 

  45. G. Chen, J.-Q. Liang, S. Jia, Opt. Express 17, 19682 (2009)

    Article  ADS  Google Scholar 

  46. J.I. Cirac, M. Lewenstein, K. Molmer, P. Zoller, Phys. Rev. A 57, 1208 (1998)

    Article  ADS  Google Scholar 

  47. S. Morrison, A.S. Parkins, Phys. Rev. A 77, 043810 (2008)

    Article  ADS  Google Scholar 

  48. S. Morrison, A.S. Parkins, Phys. Rev. Lett. 100, 040403 (2008)

    Article  ADS  Google Scholar 

  49. Y. Hamdouni, F. Petruccione, Phys. Rev. B 76, 174306 (2007)

    Article  ADS  Google Scholar 

  50. H.T. Quan, Z.D. Wang, C.P. Sun, Phys. Rev. A 76, 012104 (2007)

    Article  ADS  Google Scholar 

  51. A. Das, K. Sengupta, D. Sen, B.K. Chakrabarti, Phys. Rev. B 74, 144423 (2006)

    Article  ADS  Google Scholar 

  52. J. Vidal, G. Palacios, G. Aslangul, Phys. Rev. A 70, 062304 (2004)

    Article  ADS  Google Scholar 

  53. J. Ma, X. Wang, Phys. Rev. A 80, 012318 (2009)

    Article  ADS  Google Scholar 

  54. J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Vidal, Phys. Rev. A 73, 062318 (2006)

    Article  ADS  Google Scholar 

  56. J. Wilms, J. Vidal, F. Verstraete, S. Dusuel, J. Stat. Mech., P01023 (2012)

  57. H. Wichterich, J. Vidal, S. Bose, Phys. Rev. A 81, 032311 (2010)

    Article  ADS  Google Scholar 

  58. G. Salvatori, A. Mandarino, M.G.A. Paris, Phys. Rev. A 90, 022111 (2014)

    Article  ADS  Google Scholar 

  59. M. Kitagawa, M. Ueda, Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  60. E. Sjöqvist, R. Rahaman, U. Basu, B. Basu, J. Phys. A: Math. Theor. 43, 354026 (2010)

    Article  Google Scholar 

  61. G. Rigolin, G. Ortiz, Phys. Rev. A 85, 062111 (2012)

    Article  ADS  Google Scholar 

  62. T. Caneva, R. Fazio, G.E. Santoro, Phys. Rev. B 78, 104426 (2008)

    Article  ADS  Google Scholar 

  63. T. Caneva, R. Fazio, G.E. Santoro, J. Phys.: Conf. Ser. 143, 012004 (2009)

    ADS  Google Scholar 

  64. P. Solinas, P. Ribeiro, R. Mosseri, Phys. Rev. A 78, 052329 (2008)

    Article  ADS  Google Scholar 

  65. Y. Zheng, S. Campbell, G.D. Chiara, D. Poletti, arXiv:1509.01882, (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Çakmak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, S., Altintas, F. & E. Müstecaplıoğlu, Ö. Lipkin-Meshkov-Glick model in a quantum Otto cycle. Eur. Phys. J. Plus 131, 197 (2016). https://doi.org/10.1140/epjp/i2016-16197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16197-0

Navigation