Skip to main content
Log in

Efficient technique to evaluate the Lindhard dielectric function

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, we consider the evaluation of the Lindhard dielectric function which is the basic ingredient of many theories in various areas of physics like Solid State Physics, Plasma Physics, Atomic Physics in plasmas and Nuclear Physics. The typical divergency of the real part is removed through a simple but efficient mathematical transformation. The remaining integral is trouble-free, and can be dealt with any standard numerical quadrature. Due to the very wide use of the Lindhard dielectric function (and its extensions) in many branches of Physics, we believe that the present work will be useful to many researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28(8), 1 (1954)

    MathSciNet  Google Scholar 

  2. N.D. Mermin, Phys. Rev. B 1, 2362 (1970)

    Article  ADS  Google Scholar 

  3. K. Morawetz, U. Fuhrmann, Phys. Rev. E 61, 2272 (2000)

    Article  ADS  Google Scholar 

  4. G.S. Atwal, N.W. Ashcroft, Phys. Rev. B 65, 115109 (2002)

    Article  ADS  Google Scholar 

  5. K. Morawetz, Phys. Rev. E 88, 022148 (2013)

    Article  ADS  Google Scholar 

  6. A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Press, New York, 1997)

  7. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Rep. Prog. Phys. 70, 1 (2007)

    Article  ADS  Google Scholar 

  8. G. Gregori, S.H. Glenzer, W. Rozmus, R.W. Lee, O.L. Landen, Phys. Rev. E 67, 026412 (2003)

    Article  ADS  Google Scholar 

  9. M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

    Article  ADS  Google Scholar 

  10. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nat. Photon. 6, 749 (2012)

    Article  ADS  Google Scholar 

  11. V. Yannopapas, J. Phys.: Condens. Matter. 20, 325211 (2008)

    Google Scholar 

  12. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  13. M.D. Barriga-Carrasco, Phys. Rev. E 76, 016405 (2007)

    Article  ADS  Google Scholar 

  14. I. Abril, R. Garcia-Molina, C.D. Denton, F.J. Pérez-P érez, N. Arista, Phys. Rev. A 58, 357 (1998)

    Article  ADS  Google Scholar 

  15. A. Selchow, K. Morawetz, Phys. Rev. E 59, 1015 (1999)

    Article  ADS  Google Scholar 

  16. M. Akbari-Moghanjoughi, Phys. Plasmas 22, 022103 (2015)

    Article  ADS  Google Scholar 

  17. D. Emfietzoglou, I. Kyriakou, I. Abril, R. Garcia-Molina, I.D. Petsalakis, H. Nikjoo, A. Pathak, Nucl. Instrum. Methods Phys. Res. B 267, 45 (2009)

    Article  ADS  Google Scholar 

  18. U. Gupta, A.K. Rajagopal, Phys. Rep. 87, 261 (1982)

    Article  ADS  Google Scholar 

  19. C. Gouedard, Deutsch, J. Math. Phys. 19, 32 (1978)

    Article  ADS  Google Scholar 

  20. F. Perrot, M.W.C. Dharma-wardana, Phys. Rev. A 30, 2619 (1984)

    Article  ADS  Google Scholar 

  21. H. Winter, Phys. Rep. 367, 387 (2002)

    Article  ADS  Google Scholar 

  22. F.J. García de Abajo, P.M. Echenique, Phys. Rev. B 48, 13399 (1993)

    Article  ADS  Google Scholar 

  23. Z. Moldabekov, P. Ludwig, M. Bonitz, T. Ramazanov, Phys. Rev. E 91, 023102 (2015)

    Article  ADS  Google Scholar 

  24. A. Benuzzi-Mounaix et al., Phys. Scr. T161, 014060 (2014)

    Article  ADS  Google Scholar 

  25. C. Fourment, F. Deneuville, D. Descamps, F. Dorchies, S. Petit, O. Peyrusse, Phys. Rev. B 89, 161110(R) (2014)

    Article  ADS  Google Scholar 

  26. N.R. Arista, W. Brandt, Phys. Rev. A 29, 1471 (1984)

    Article  ADS  Google Scholar 

  27. S. Micheau, F.A. Gutierrez, B. Pons, H. Jouin, J. Phys. B: At. Mol. Opt. Phys. 38, 3405 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. U. Ancarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancarani, L.U., Jouin, H. Efficient technique to evaluate the Lindhard dielectric function. Eur. Phys. J. Plus 131, 114 (2016). https://doi.org/10.1140/epjp/i2016-16114-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16114-7

Keywords

Navigation