Skip to main content
Log in

A note on the electrochemical nature of the thermoelectric power

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

While thermoelectric transport theory is well established and widely applied, it is not always clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual interaction between electric charge transport and heat transport, is to be related to the gradient of the system’s chemical potential or to the gradient of its electrochemical potential. The present article aims to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck coefficient is experimentally determined. We then turn to the analysis of the relationship between the thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to introduce a contact potential as seen sometimes in the literature. Furthermore, we demonstrate that the phenomenological expression of the electrical current resulting from thermoelectric effects may be directly obtained from the drift-diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. de Groot, Thermodynamics of Irreversible Processes (Interscience Publishers Inc., New York, 1958)

  2. Y. Apertet, H. Ouerdane, C. Goupil, Ph. Lecoeur, Phys. Rev. E 85, 031116 (2012)

    Article  ADS  Google Scholar 

  3. T.J. Seebeck, Abh. K. Akad. Wiss. Berlin 21, 289 (1821)

    Google Scholar 

  4. H.C. Oersted, Ann. Chim. Phys. 22, 199 (1823)

    Google Scholar 

  5. H.B. Callen, Phys. Rev. 73, 1349 (1948)

    Article  ADS  Google Scholar 

  6. C. Herring, Phys. Rev. 96, 1163 (1954)

    Article  ADS  Google Scholar 

  7. P.J. Price, Phys. Rev. 104, 1223 (1956)

    Article  ADS  Google Scholar 

  8. R.R. Heikes, R.W. Ure, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, 1961)

  9. C. Wood, Rep. Prog. Phys. 51, 459 (1988)

    Article  ADS  Google Scholar 

  10. C. Kittel, Introduction to Solid State Physics, 8th edition (John Wiley & Sons, New York, 2005)

  11. G.D. Mahan, J. Appl. Phys. 87, 7326 (2000)

    Article  ADS  Google Scholar 

  12. J. Cai, G.D. Mahan, Phys. Rev. B 74, 075201 (2006)

    Article  ADS  Google Scholar 

  13. M.R. Peterson, B.S. Shastry, Phys. Rev. B 82, 195105 (2010)

    Article  ADS  Google Scholar 

  14. A.A. Varlamov, K.V. Kavokin, EPL 103, 47005 (2013)

    Article  ADS  Google Scholar 

  15. H. Ouerdane, A.A. Varlamov, A.V. Kavokin, C. Goupil, C.B. Vining, Phys. Rev. B 91, 100501(R) (2015)

    Article  ADS  Google Scholar 

  16. K. Behnia, Fundamentals of Thermoelectricity (Oxford University Press, Oxford, 2015)

  17. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (John Wiley & Sons, New York, 1985)

  18. Z. Zhou, C. Uher, Rev. Sci. Instrum. 76, 023901 (2005)

    Article  ADS  Google Scholar 

  19. I. Riess, Solid State Ionics 95, 327 (1997)

    Article  Google Scholar 

  20. J. Martin, T. Tritt, C. Uher, J. Appl. Phys. 108, 121101 (2010) and references therein

    Article  ADS  Google Scholar 

  21. R.G. Chambers, Phys. Educ. 12, 374 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Lundstrom, Fundamentals of Carrier Transport, second edition (Cambridge University Press, Cambridge, 2009)

  23. A.F. Ioffe, Physics of Semiconductors (Infosearch, Ltd., London, 1960)

  24. F.W.G. Rose, E. Billig, J.E. Parrott, J. Electron. Control 3, 481 (1957)

    Article  Google Scholar 

  25. C. Goupil, W. Seifert, K. Zabrocki, E. Muller, G.J. Snyder, Entropy 13, 1481 (2011)

    Article  ADS  Google Scholar 

  26. B.S. Shastry, Thermopower in Correlated Systems, in New Materials for Thermoelectric Applications: Theory and Experiment (Springer Netherlands, Dordrecht, 2013)

  27. P. Sun, B. Wei, J. Zhang, J.M. Tomczak, A.M. Strydom, M. Sondergaard, B.B. Iversen, F. Steglich, Nat. Commun. 6, 7475 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apertet, Y., Ouerdane, H., Goupil, C. et al. A note on the electrochemical nature of the thermoelectric power. Eur. Phys. J. Plus 131, 76 (2016). https://doi.org/10.1140/epjp/i2016-16076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16076-8

Keywords

Navigation