Skip to main content
Log in

Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Using the Pekar variational method, the effects of the temperature, impurity and electromagnetic fields on the transition are investigated through the eigenenergies of the ground and first-excited states of the polaron in a triangular potential quantum dot. Those parameters are essential for the transition of the polaron from the ground state to the first-excited state. This quantum system in nanostructure can be employed as a two-level quantum qubit. The numerical result shows the weak evolution of the probability density with the electron-phonon coupling constant, the cyclotron frequency and the Coulombic potential. It is also noted that this probability increased with the confinement length and electric-field strength. The tunneling of temperature leads to the amplification of the probability density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhi-Xin Li, Cheng-HongYin, Physica B 418, 69 (2013)

    Article  ADS  Google Scholar 

  2. J. Lee, H.N. Spector, J. Appl. Phys. 97, 043511 (2005)

    Article  ADS  Google Scholar 

  3. R. Haupt, L. Wendler, Solid-State Electron. 37, 1153 (1994)

    Article  ADS  Google Scholar 

  4. L. Wendler, A.V. Chaplik, R. Haupt, O. Hipdlito, J. Phys. 5, 8031 (1993)

    Google Scholar 

  5. R.C. Ashoori, Nature 379, 413 (1996)

    Article  ADS  Google Scholar 

  6. W. Xie, Phys. Lett. A. 252, 58 (1999)

    Article  ADS  Google Scholar 

  7. S.G. Schirmer, A. Kolli, D.K.L. Oi, Phys. Rev. A 69, 050306 (2004)

    Article  ADS  Google Scholar 

  8. A. Luis, L.L. Sanchez, Phys. Rev. A 56, 994 (1997)

    Article  ADS  Google Scholar 

  9. L. Viola, S. Lioyd, Phys. Rev. A 58, 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.S. Li, J.B. Xia, F.H. Yang, Z.C. Niu, S.L. Feng, H.Z. Zheng, J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  11. W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, J.L. Xiao, J. Low Temp. Phys. 160, 112 (2010)

    Article  ADS  Google Scholar 

  12. Y.F. Yu, W.P. Li, J.W. Yin, J.L. Xiao, Int. J. Theor. Phys. 50, 3322 (2011)

    Article  Google Scholar 

  13. Y.J. Wen, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18, 446 (2009)

    Article  ADS  Google Scholar 

  14. S. Jia-kui, L. Hong-Juan, J.L. Xiao, Physica B 404, 1961 (2009)

    Article  ADS  Google Scholar 

  15. M.A. Nielsen, I.L. Chang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  16. I. D’Amico, Microelectron. J. 37, 1440 (2006)

    Article  Google Scholar 

  17. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  18. P. Hawrylak, M. Korkusinski, Solid State Commun. 136, 508 (2005)

    Article  ADS  Google Scholar 

  19. N. Issofa et al., Am. J. Mod. Phys. 4, 158 (2015)

    Article  Google Scholar 

  20. Wei-Ping Li, Ji-Wen Yin, Yi-Fu Yu, Jing-Lin Xiao, Zi-Wu Wang, Int. J. Theor. Phys. 48, 3339 (2009)

    Article  Google Scholar 

  21. A.J. Fotue et al., Am. J. Mod. Phys. 4, 138 (2015)

    Article  Google Scholar 

  22. Li-Qin Feng, Jing-Qi Li, Jing-Lin Xiao, Mod. Phys. Lett. B 29, 1450261 (2015)

    Article  Google Scholar 

  23. Jing-Lin Xiao, Superlattices Microstruct. 70, 39 (2014)

    Article  ADS  Google Scholar 

  24. Jing-Lin Xiao, J. Phys. Soc. Jpn. 83, 034004 (2014)

    Article  ADS  Google Scholar 

  25. S.S. Li, J.B. Xia, J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  26. Zhi-Xin Li, J. Low Temp. Phys. 165, 36 (2011)

    Article  ADS  Google Scholar 

  27. S.H. Chen, J.L. Xiao, Phys. B 393, (2007)

  28. J.K. Sun, H.J. Li, J.L. Xiao, Mod. Phys. Lett. B 23, 3273 (2009)

    Article  ADS  Google Scholar 

  29. Zhi-Xin Li, J. Low Temp. Phys. 181, 30 (2015)

    Article  ADS  Google Scholar 

  30. T. Ezaki, N. Mori, C. Hamaguchi, Phys. Rev. B 56, 6428 (1998)

    Article  ADS  Google Scholar 

  31. B.S. Kandemir, A. Cetin, J. Phys.: Condens. Matter 17, 667 (2005)

    ADS  Google Scholar 

  32. Zhi-xi Li, Li-xin Zhang, Superlattices Microstruct. 60, 23 (2013)

    Article  ADS  Google Scholar 

  33. W.P. Li, J.W. Yin, Y.F. Yu, J.L. Xiao, Z.W. Wang, Int J. Theor. Phys. 48, 3339 (2009)

    Article  MathSciNet  Google Scholar 

  34. D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Eduction, Upper Saddle River, 2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotue, A.J., Kenfack, S.C., Tiotsop, M. et al. Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential. Eur. Phys. J. Plus 131, 75 (2016). https://doi.org/10.1140/epjp/i2016-16075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16075-9

Keywords

Navigation