Skip to main content
Log in

Nanofluid flow and forced convection heat transfer over a stretching surface considering heat source

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, magnetic field effects on the forced convection flow of a nanofluid over a stretching surface in the presence of heat generation/absorption are studied. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using the fourth-order Runge-Kutta integration scheme featuring the shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titania (TiO2) with water as their base fluid has been considered. The influence of significant parameters, such as magnetic parameter, volume fraction of the nanoparticles, heat generation/absorption parameter, velocity ratio parameter and temperature index parameter on the flow and heat transfer characteristics are discussed. The results show that the values of temperature profiles increase with increasing heat generation/absorption and volume fraction of the nanoparticles but they decrease with increasing velocity ratio parameter and temperature index parameter. Also, it can be found that selecting silver as nanoparticle leads to the highest heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 1, A 2, A 3 :

Constants parameters

a :

Stretching sheet parameter

b :

Free stream velocity parameter

C f :

Skin friction coefficient

f :

Dimensionless stream function

k :

Thermal conductivity

M :

Magnetic parameter

Nu :

Nusselt number

Pr :

Prandtl number

q w :

Surface heat flux

Q 0 :

Dimensional heat generation or absorption coefficient

Re x :

Local Reynolds number

T :

Fluid temperature

T :

Ambient temperature

(u, v):

Velocity components in the (x, y) directions, respectively

(x, y):

Cartesian coordinates along x, y axes, respectively

α :

Thermal diffusivity

η :

Similarity parameter

θ :

Similarity function for temperature

ρ :

Density

ϕ :

nanoparticle volume fraction

μ :

Dynamic viscosity

ν :

Kinematic viscosity

τ w :

Wall shear stress

ψ :

Stream function

λ :

Velocity ratio parameter

w :

Condition at the surface

∞:

Condition at infinity

nf:

Nanofluid

f :

Base fluid

s :

Nano-solid-particles

References

  1. E.M.A. Elbashbeshy, M.A.A. Basid, Appl. Math. Comput. 158, 799 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Chakrabarti, A.S. Gupta, Quart. Appl. Math. 37, 73 (1979).

    MATH  Google Scholar 

  3. A.K. Borkakoti, A. Bharali, Q. Appl. Math. 41, 461 (1983).

    Google Scholar 

  4. S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, Vol. 231 and 66, (1995) pp. 99--105.

  5. M. Sheikholeslami, M. Gorji-Bandpay, D.D. Ganji, Int. Commun. Heat Mass Transfer 39, 978 (2012).

    Article  Google Scholar 

  6. Hamid Reza Ashorynejad, Abdulmajeed A. Mohamad, Mohsen Sheikholeslami, Int. J. Thermal Sci. 64, 240 (2013).

    Article  Google Scholar 

  7. Soheil Soleimani, M. Sheikholeslami, D.D. Ganji, M. Gorji-Bandpay, Int. Commun. Heat Mass Transfer 39, 565 (2012).

    Article  Google Scholar 

  8. Mohsen Sheikholeslami, Shirley Abelman, IEEE Trans. Nanotechnol. 14, 561 (2015) DOI:10.1109/TNANO.2015.2416318.

    Article  ADS  Google Scholar 

  9. Mohsen Sheikholeslami, Mohammad Mehdi Rashidi, J. Taiwan Inst. Chem. Eng., (2015) DOI:10.1016/j.jtice.2015.03.035.

  10. Mohsen Sheikholeslami, Mofid Gorji Bandpy, Hamid Reza Ashorynejad, Phys. A: Stat. Mech. Appl. 432, 58 (2015).

    Article  MATH  Google Scholar 

  11. Mohsen Sheikholeslami Kandelousi, Eur. Phys. J. Plus 129, 248 (2014).

    Article  Google Scholar 

  12. Mohsen Sheikholeslami, Davood Domiri Ganji, Mohammad Mehdi Rashidi, J. Taiwan Inst. Chem. Eng. 47, 6 (2015).

    Article  Google Scholar 

  13. Mohsen Sheikholeslami Kandelousi, Phys. Lett. A 378, 3331 (2014).

    Article  ADS  Google Scholar 

  14. Mohammad Hatami, Mohsen Sheikholeslami, M. Hosseini, Davood Domiri Ganji, J. Mol. Liq. 194, 251 (2014).

    Article  Google Scholar 

  15. M. Sheikholeslami, M.M. Rashidi, Eur. Phys. J. Plus 130, 115 (2015).

    Article  Google Scholar 

  16. T. Hayat, M. Qasim, Int. J. Heat Mass Transfer 53, 4780 (2010).

    Article  MATH  Google Scholar 

  17. Mohsen Sheikholeslami, Mofid Gorji-Bandpy, Davood Domiri Ganji, Renew. Sustain. Energy Rev. 49, 444 (2015).

    Article  Google Scholar 

  18. M. Hatami, D.D. Ganji, M. Gorji-Bandpy, Renew. Sustain. Energy Rev. 37, 168 (2014).

    Article  Google Scholar 

  19. Chaoli Zhang, Liancun Zheng, Xinxin Zhang, Goong Chen, Appl. Math. Model. 39, 165 (2015).

    Article  MathSciNet  Google Scholar 

  20. M. Sheikholeslami, R. Ellahi, Int. J. Heat Mass Transfer 89, 799 (2015).

    Article  Google Scholar 

  21. Mohsen Sheikholeslami, Davood Domiri Ganji, Energy 75, 400 (2014).

    Article  Google Scholar 

  22. Mohsen Sheikholeslami, Davood Domiri Ganji, M. Younus Javed, R. Ellahi, J. Magn. & Magn. Mater. 374, 36 (2015).

    Article  ADS  Google Scholar 

  23. Mohsen Sheikholeslami, Mofid Gorji-Bandpy, Kuppalapalle Vajravelu, Int. J. Heat Mass Transfer 80, 16 (2015).

    Article  Google Scholar 

  24. M.M. Rahman, Hakan F. Öztop, Michael Steele, A.G. Naim, Khaled Al-Salem, Talaat A. Ibrahim, Int. Commun. Heat Mass Transfer 64, 50 (2015).

    Article  Google Scholar 

  25. M. Sheikholeslami, D.D. Ganji, Sci. Iran. B 21, 203 (2014).

    Google Scholar 

  26. M. Sheikholeslami, M. Gorji-Bandpy, Soheil Soleimani, Int. Commun. Heat Mass Transfer 47, 73 (2013).

    Article  Google Scholar 

  27. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Energy 60, 501 (2013).

    Article  Google Scholar 

  28. O.D. Makinde, E. Osalusi, Rom. J. Phys. 51, 293 (2006).

    Google Scholar 

  29. N. Masoumi, N. Sohrabi, A. Behzadmehr, J. Phys. D: Appl. Phys. 42, 055501 (2009).

    Article  ADS  Google Scholar 

  30. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  31. R. Prasher, E.P. Phelan, ASME J. Heat Transfer 128, 588 (2006).

    Article  Google Scholar 

  32. H.E. Patel, T. Sundarrajan, T. Pradeep, A. Dasgupta, N. Dasgupta, S.K. Das, Pramana J. Phys. 65, 863 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Valipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, M., Valipour, P., Shambooli, M. et al. Nanofluid flow and forced convection heat transfer over a stretching surface considering heat source. Eur. Phys. J. Plus 130, 155 (2015). https://doi.org/10.1140/epjp/i2015-15155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15155-8

Keywords

Navigation