Skip to main content
Log in

Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Comment to this article was published on 04 September 2020

Abstract

Using the Jacobi elliptic functions and the alternative (G′/G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.B. Pelap, M. Faye, J. Math. Phys. 46, 033502-1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Marquié, J.M. Bilbault, M. Remoissenet, Phys. Rev. E 51, 6127 (1995).

    Article  ADS  Google Scholar 

  3. F. Kenmogne, D. Yemélé, Phys. Rev. E 88, 043204-1 (2013).

    Article  ADS  Google Scholar 

  4. De-Sheng Li, Hong-Qing Zhang, Appl. Math. Comput. 147, 789 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. A.M. Wazwaz, Chaos Solitons Fractals 25, 55 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. E.M.E. Zayed, M.A.M. Abdelaziz, Int. J. Nonlinear Sci. Numer. Simulat. 11, 595 (2010).

    Google Scholar 

  7. W. Malfliet, Am. J. Phys. 60, 650 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. A. Bekir, Phys. Scr. 77, 501 (2008).

    Article  Google Scholar 

  9. G. Tsigaridas, A. Fragos, I. Polyzos, M. Fakis, A. Ioannou, V. Giannetas, P. Persephonis, Chaos Solitons Fractals 23, 1841 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. A.A. Suzo, Phys. Lett. A. 335, 88 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  11. R.S. Banerjee, Phys. Scr. 57, 598 (1998).

    Article  ADS  Google Scholar 

  12. D. Mehdi, S. Fatemeh Phys. Scr. 75, 778 (2007).

    Article  Google Scholar 

  13. J.H. He, Phys. Scr. 76, 680 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. V.O. Vakhnenko, E.J. Parkes, A.J. Morrison, Chaos Solitons Fractals 17, 683 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971).

    Article  MATH  ADS  Google Scholar 

  17. E.M.E. Zayed, M.A.M. Abdelaziz, Appl. Math. Comput. 218, 2259 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  18. J.F. Zhang, Chin. Phys. 8, 326 (1999).

    Google Scholar 

  19. A.V. Porubov, Phys. Lett. A 221, 391 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. E. Kengne, R. Vailiancourt, B.A. Malomed, Int. J. Mod. Phys. B 23, 133 (2009).

    Article  MATH  ADS  Google Scholar 

  21. D. Yemélé, P. Marquié, J.M. Bilbault, Phys. Rev. E 68, 016605 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  22. A.B. Togueu Motcheyo, C. Tchawoua, J.D. Tchinang Tchameu, Phys. Rev. E 88, 040901(R) (2013).

    Article  ADS  Google Scholar 

  23. A. Kenfack-Jiotsa, Eric Tala-Tebue, J. Phys. Soc. Jpn. 80, 034003-1 (2011).

    Article  ADS  Google Scholar 

  24. E. Kengne, A. Lakhssassi, R. Vaillancourt, W.M. Liu, Eur. Phys. J. Plus 63, 128 (2013).

    Google Scholar 

  25. S. Abdoulkary, A. Mohamadou, T. Beda, Commun. Nonlinear Sci. Numer. Simulat. 16, 3525 (2011).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tala-Tebue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tala-Tebue, E., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A. et al. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129, 136 (2014). https://doi.org/10.1140/epjp/i2014-14136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14136-9

Keywords

Navigation