Skip to main content

Advertisement

Log in

Resistive plate chambers in positron emission tomography

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Townsend, The Theory of Ionization of Gases by Collision (Constable, London, 1910).

  2. A. Blanco, A small animal PET prototype with sub-millimetre spatial resolution based on tRPCs, PhD thesis, Universidad de Santiago de Compostela, Spain (December 2012).

  3. R. Santonico, R. Cardarelli, Nucl. Instrum. Methods 187, 377 (1981).

    Article  ADS  Google Scholar 

  4. Y.N. Pestov, Timing below 100 ps with spark counters, in 36th International Winter Meeting on Nuclear Physics Bormio, Italy, 1998, pp. 604--621.

  5. P. Fonte, IEEE Trans. Nucl. Sci. 49, 881 (2002).

    Article  ADS  Google Scholar 

  6. R. Cardarelli, R. Santonico, A. di Biagio, A. Lucci, Nucl. Instrum. Methods A 263, 20 (1988).

    Article  ADS  Google Scholar 

  7. R. Cardarelli, A. di Ciaccio, R. Santonico, Nucl. Instrum. Methods A 333, 399 (1993).

    Article  ADS  Google Scholar 

  8. G. Carlino, Sci. Acta. 13, 269 (1998).

    Google Scholar 

  9. K. Abe, K. Abe, H. Hanada, H. Haitani, Y. Hoshi, Y. Inoue, Sci. Acta. 13, 281 (1998).

    Google Scholar 

  10. E. Cerron Zeballos, I. Crotty, D. Hatzifotiadou, J. Lamas-Valverde, S. Neupane, M.C.S. Williams, A. Zichichi, Nucl. Instrum. Methods A 374, 132 (1996).

    Article  ADS  Google Scholar 

  11. P. Fonte, A. Smirnitsky, M. Williams, Nucl. Instrum. Methods A 443, 201 (2000).

    Article  ADS  Google Scholar 

  12. A. Blanco, N. Carolino, C.M.B.A. Correia, L. Fazendeiro, N.C. Ferreira, M.F.F. Marques, R. Ferreira Marques, P. Fonte, C. Gil, M.P. Macedo, IEEE Trans. Nucl. Sci. 53, 2489 (2006).

    Article  ADS  Google Scholar 

  13. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1984).

  14. S.C. Haydon, Electrical Breakdown of Gases (MacMillan, London, 1973).

  15. I. Kitayama, H. Sakai, Y. Teramoto, S. Chinomi, Y. Inoue, E. Nakano, T. Takahashi, Nucl. Instrum. Methods A 424, 474 (1999).

    Article  ADS  Google Scholar 

  16. A. Semak, V. Ammosov, V. Gapienko, A. Ivalinov, V. Koreshev, A. Kulemzin, Y. Sviridov, V. Zaets, E. Gushin, S. Somov, Nucl. Instrum. Methods A 456, 50 (2000).

    Article  ADS  Google Scholar 

  17. P. Fonte, N. Carolino, L. Costa, R. Ferreira Marques, S. Mendirata, V. Peskov, A. Policarpo, Nucl. Instrum. Methods A 431, 154 (1999).

    Article  ADS  Google Scholar 

  18. R. Arnaldi et al., Nucl. Instrum. Methods A 456, 73 (2000).

    Article  ADS  Google Scholar 

  19. C. Bacci et al., Nucl. Instrum. Methods A 443, 342 (2000).

    Article  ADS  Google Scholar 

  20. J.T. Bromley, Investigation of the operation of Resitive Plate Chambers, MSc. thesis, University of Manchester (1994).

  21. J. Neves, Desenvolvimento de um protótipo RPC-PET, MSc. thesis, Universidade de Coimbra, 2008 (in Portuguese).

  22. P. Camarri, R. Cardarelli, A. Di Ciaccio, R. Santonico, Nucl. Instrum. Methods A 414, 317 (1998).

    Article  ADS  Google Scholar 

  23. V. Koreshev, V. Ammosov, A. Ivanilov, Y. Sviridov, V. Zaets, A. Semak, Nucl. Instrum. Methods A 456, 46 (2000).

    Article  ADS  Google Scholar 

  24. P. Fonte, IEEE Trans. Nucl. Sci. 43, 2135 (1996).

    Article  ADS  Google Scholar 

  25. M. Abbrescia, A. Colaleo, G. Iaselli, F. Loddo, M. Maggi, B. Marangelli, S. Natali, S. Nuzzo, G. Pugliese, A. Ranieri, F. Romano, S. Altieri, G. Bruno, G. Gianini, S.P. Ratti, L. Viola, P. Vitulo, Nucl. Phys. B 78, 459 (1999).

    Article  Google Scholar 

  26. P. Fonte, V. Peskov, Nucl. Instrum. Methods A 477, 17 (2002).

    Article  ADS  Google Scholar 

  27. P. Fonte, Nucl. Instrum. Methods A 456, 6 (2000).

    Article  ADS  Google Scholar 

  28. S. Ramo, Currents induced by electron motion, in Proceedings of the IRE, Vol. 27 (1939) pp. 584--585, to be published in IEEE Transactions on Nuclear Science, DOI:10.1109/NSSMIC.2002.1239467.

  29. M. Couceiro, P. Crespo, R. Ferreira Marques, P. Fonte, Scatter fraction, count rates, and noise equivalent count rate of an RPC TOF-PET system: Simulation study following the NEMA NU2-2001 standards, in Conference Records 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Anaheim, CA, USA, 2012, M10--32.

  30. A. Blanco, M. Couceiro, P. Crespo, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Lopes, J.A. Neves, Nucl. Instrum. Methods A 602, 780 (2009).

    Article  ADS  Google Scholar 

  31. M. Couceiro, A. Blanco, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Lopes, Nucl. Instrum. Methods A 580, 915 (2007).

    Article  ADS  Google Scholar 

  32. A. Pullia, W. Müller, C. Boiano, R. Bassini, IEEE Trans. Nucl. Sci. 49, 3269 (2002).

    Article  ADS  Google Scholar 

  33. A. Gouvêa, Medida da resolução temporal de um detector gasoso RPC destinado a TOF-PET, MSc thesis, Universidade de Coimbra (2007) (in Portuguese).

  34. A. Blanco, V. Chepel, R. Ferreira Marques, P. Fonte, M.I. Lopes, V. Peskov, A. Policarpo, Nucl. Instrum. Methods A 508, 88 (2003).

    Article  ADS  Google Scholar 

  35. A. Blanco, P. Fonte, L. Lopes, P. Martins, J. Michel, M. Palka, M. Kajetanowicz, G. Korcyl, M. Traxler, R. Ferreira Marques, JINST 7, P11012 (2012).

    Article  ADS  Google Scholar 

  36. N.N. Shehad, Small animal PET camera design based on 2-mm straw detectors, in Conference Record of the 2006 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) San Diego, CA, USA, 2006, pp. 2462--2468, DOI:10.1109/NSSMIC.2006.354410.

  37. P. Martins, A. Blanco, P. Crespo, Achieving 0.6-mm FWHM spatial resolution with an RPC-based small-animal PET prototype, in 2013 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Seul, Korea, 2013, in preparation.

  38. J. Michel, M. Böhmerb, M. Kajetanowicz, G. Korcyl, L. Maier, M. Palkad, J. Stroth, A. Tarantola, M. Traxler, C. Ugur, S. Yurevich, JINST 6, c12056 (2011).

    Article  Google Scholar 

  39. P. Martins, P. Crespo, R. Ferreira Marques, M. Kajetanowicz, G. Korcyl, L. Lopes, J. Michel, M. Palka, M. Traxler, P. Fonte, Experimental sub-millimeter resolution with a small-animal RPC-PET prototype, in Conference Records 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Anaheim, CA, USA, 2012, M21--12, to be published in IEEE Transactions on Nuclear Science.

  40. P. Crespo, J. Reis, M. Couceiro, A. Blanco, N.C. Ferreira, R. Ferreira Marques, P. Martins, P. Fonte, IEEE Trans. Nucl. Sci. 59, 520 (2012).

    Article  ADS  Google Scholar 

  41. L. Eriksson, D.W. Townsend, M. Conti, C.L. Melcher, M. Eriksson, B.W. Jakoby, H. Rothfuss, M.E. Casey, B. Bendriem, Potentials for large axial field of view positron camera systems, in Conference Records 2011 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Dresden, Germany, 2008, pp. 1632--1636, DOI:10.1109/NSSMIC.2006.354410.

  42. National Electrical Manufacturers Association, Nema Standards Publication NU 2-2001, Performance measurements of positron emission tomographs (Rosslyn, VA, 2001).

  43. M. Daube-Witherspoon, J. Karp, M. Casey, F. DiFilippo, H. Hines, G. Muehllehner, V. Simcic, C. Stearns, L.E. Adam, S. Kohlmeyer, V. Sossi, J. Nucl. Med. 43, 1398 (2002).

    Google Scholar 

  44. C.M. Kao, Q. Xie, Y. Dong, L. Wan, C.T. Chen, IEEE Trans. Nucl. Sci. 56, 2678 (2008).

    Article  ADS  Google Scholar 

  45. V. Kapoor, B.M. McCook, F.S. Torok, Radiographics 24, 523 (2004).

    Article  Google Scholar 

  46. S. Robinson, P.J. Julyan, D.L. Hastings, J. Zweit, Phys. Med. Biol. 49, 5505 (2004).

    Article  Google Scholar 

  47. O. Barret, T.A. Carpenter, J.C. Clark, R.E. Ansorge, T.D. Fryer, Phys. Med. Biol. 50, 4823 (2005).

    Article  Google Scholar 

  48. S.G. Khohlmyer, C.W. Stearns, P.E. Kinahan, T.K. Lewellen, NEMA NU2-2001 performance results for the GE Advance PET system, in Conference Records 2002 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Norfolk, VA, USA, 2002, pp. 890--894, DOI:10.1109/NSSMIC.2002.1239467.

  49. W. Moses, IEEE Trans. Nucl. Sci. 50, 1325 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  50. J. Karp, S. Surti, M. Daube-Witherspoon, G. Muehllehner, J. Nucl. Med. 49, 462 (2008).

    Article  Google Scholar 

  51. G. El Fakhri, S. Surti, C. Trott, J. Scheuermann, J. Karp, J. Nucl. Med. 52, 347 (2011).

    Article  Google Scholar 

  52. M. Daube-Witherspoon, S. Surti, A. Perkins, M.W.C.C.M. Kyba, R. Wiener et al., Phys. Med. Biol. 55, 45 (2010).

    Article  Google Scholar 

  53. S. Strother, M. Casey, E. Hoffman, IEEE Trans Nucl. Sci. 37, 783 (1990).

    Article  ADS  Google Scholar 

  54. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., Nucl. Instrum. Methods A 506, 250 (2003).

    Article  ADS  Google Scholar 

  55. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).

    Article  ADS  Google Scholar 

  56. S. Surti, A. Kuhn, M.E. Werner, A.E. Perkins, J. Kolthammer, J.S. Karp, J. Nucl. Med. 48, 471 (2007).

    Google Scholar 

  57. P. Martins, M. Couceiro, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Mendes, P. Crespo, On lesion detectability by means of 300-ps-FWHM TOF whole-body RPC-PET: an experiment-based simulation study, in Conference Records 2012 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Anaheim, CA, USA, 2012, M09--54, to be published in IEEE Transactions on Nuclear Science.

  58. W.P. Segars, Development of a new dynamic NURBS based cardiac-torso (NCAT) phantom, PhD thesis, The University of North Carolina (May 2001).

  59. M. Phelps, J. Mazziotta, Science 228, 799 (1985).

    Article  ADS  Google Scholar 

  60. J. Zhang, P.D. Olcott, G. Chinn, A.M.K. Foudray, C.S. Levin, Med. Phys. 34, 689 (2007).

    Article  Google Scholar 

  61. P. Rodrigues, A. Trindade, J. Varela, JINST 2, P01004 (2007).

    Article  ADS  Google Scholar 

  62. A. Trindade, P. Almeida, F. Balau, N. Ferreira, S. Fetal, F. Fraga, Clear-PEM: Monte Carlo performance and image reconstruction studies, in Conference Record of the 2003 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Portland, OR, USA, 2003, M3--118, DOI:10.1109/NSSMIC.2003.1352254.

  63. J. Reis, Simulação da biodistribuição, aniquilação e escape de fotões PET no corpo humano, MSc thesis, Universidade de Coimbra (2008) (in Portuguese).

  64. J. Mourik, F. van Velden, M. Lubberink, R. Kloet, B. van Berckel, A. Lammertsma, R. Boellaard, NeuroImage 43, 676 (2008).

    Article  Google Scholar 

  65. P. Martins, M. Couceiro, N.C. Ferreira, R. Ferreira Marques, P. Fonte, L. Mendes, P. Crespo, A direct time-of-flight reconstruction for whole-body single-bed RPC-PET: results from lesion and anthropomorphic simulated data, in Conference Records 2011 IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC) Valencia, Spain, 2011, pp. 2610--2616, DOI:10.1109/NSSMIC.2011.6152701.

  66. P. Crespo, G. Shakirin, F. Fiedler, W. Enghardt, A. Wagner, Phys. Med. Biol 52, 6795 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ferreira Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo, P., Blanco, A., Couceiro, M. et al. Resistive plate chambers in positron emission tomography. Eur. Phys. J. Plus 128, 73 (2013). https://doi.org/10.1140/epjp/i2013-13073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13073-5

Keywords

Navigation