Skip to main content
Log in

Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, a new perspective of gravitational-thermodynamic duality as an entropic force arising from alterations in the information associated with the positions of material bodies is found. In this paper, we generalize some features of this model in the presence of noncommutative Schwarzschild black hole by applying the method of coordinate coherent states describing smeared structures. We employ two different distributions: a) Gaussian and b) Lorentzian. Both mass distributions provide the similar quantitative aspects for the entropic force. Our study show the entropic force on the smallest fundamental unit of the holographic screen with radius r 0 is zero. As a result, black-hole remnants are unconditionally inert and gravitational interactions do not exist therein. So, a distinction between gravitational and inertial mass in the size of black-hole remnant is observed, i.e. the failure of the principle of equivalence. In addition, if one considers the screen radius to be less than the radius of the smallest holographic surface at the Planckian regime, then one encounters some unusual dynamical features leading to gravitational repulsive force and negative energy. On the other hand, the significant distinction between the two distributions is perceived to occur around r 0, and that is worth of mentioning: at this regime either our analysis is not the proper one, or nonextensive statistics should be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  2. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995) arXiv:gr-qc/9504004.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010) arXiv:0912.3165.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. E.P. Verlinde, JHEP 04, 029 (2011) arXiv:1001.0785.

    Article  MathSciNet  ADS  Google Scholar 

  5. R.G. Cai, L.M. Cao, N. Ohta, Phys. Rev. D 81, 061501 (2010) arXiv:1001.3470.

    Article  ADS  Google Scholar 

  6. M. Li, Y. Wang, Phys. Lett. B 687, 243 (2010) arXiv:1001.4466.

    Article  ADS  Google Scholar 

  7. D.A. Easson, P.H. Frampton, G.F. Smoot, Phys. Lett. B 696, 273 (2011) arXiv:1002.4278.

    Article  ADS  Google Scholar 

  8. C. Gao, Phys. Rev. D 81, 087306 (2010) arXiv:1001.4585.

    Article  ADS  Google Scholar 

  9. J. Kowalski-Glikman, Phys. Rev. D 81, 084038 (2010) arXiv:1002.1035.

    Article  MathSciNet  ADS  Google Scholar 

  10. R.G. Cai, L.M. Cao, N. Ohta, Phys. Rev. D 81, 084012 (2010) arXiv:1002.1136.

    Article  MathSciNet  ADS  Google Scholar 

  11. Y. Tian, X. Wu, Phys. Rev. D 81, 104013 (2010) arXiv:1002.1275.

    Article  ADS  Google Scholar 

  12. Y.S. Myung, Y.W. Kim, Phys. Rev. D 81, 105012 (2010) arXiv:1002.2292.

    Article  ADS  Google Scholar 

  13. R.A. Konoplya, Eur. Phys. J. C 69, 555 (2010) arXiv:1002.2818.

    Article  ADS  Google Scholar 

  14. W.G. Paeng, M. Rho, Mod. Phys. Lett. A 25, 399 (2010) arXiv:1002.3022.

    Article  ADS  MATH  Google Scholar 

  15. R. Banerjee, B.R. Majhi, Phys. Rev. D 81, 124006 (2010) arXiv:1003.2312.

    Article  ADS  Google Scholar 

  16. Y.S. Myung, Eur. Phys. J. C 71, 1549 (2011) arXiv:1003.5037.

    ADS  Google Scholar 

  17. B. Koch, AIP Conf. Proc. 1232, 313 (2010) arXiv:1004.2879.

    Article  ADS  Google Scholar 

  18. J.R. Mureika, R.B. Mann, Mod. Phys. Lett. A 26, 171 (2011) arXiv:1005.2214.

    Article  ADS  Google Scholar 

  19. P. Nicolini, Phys. Rev. D 82, 044030 (2010) arXiv:1005.2996.

    Article  ADS  Google Scholar 

  20. F.R. Klinkhamer, Class. Quantum Grav. 28, 125003 (2011) arXiv:1006.2094.

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Percacci, G.P. Vacca, Class. Quantum Grav. 27, 245026 (2010) arXiv:1008.3621.

    Article  MathSciNet  ADS  Google Scholar 

  22. V.V. Kiselev, S.A. Timofeev, Mod. Phys. Lett. A 26, 109 (2011) arXiv:1009.1301.

    Article  ADS  MATH  Google Scholar 

  23. A. Kobakhidze, Phys. Rev. D 83, 021502 (2011) arXiv:1009.5414.

    Article  ADS  Google Scholar 

  24. H. Sahlmann, Class. Quantum Grav. 28, 015006 (2011) arXiv:1010.2650.

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Bastos, O. Bertolami, N. Dias, J. Prata, Class. Quantum Grav. 28, 125007 (2011) arXiv:1010.4729.

    Article  MathSciNet  ADS  Google Scholar 

  26. Y.F. Cai, E.N. Saridakis, Phys. Lett. B 697, 280 (2011) arXiv:1011.1245.

    Article  ADS  Google Scholar 

  27. S.H. Hendi, A. Sheykhi, Phys. Rev. D 83, 084012 (2011) arXiv:1012.0381.

    Article  ADS  Google Scholar 

  28. I. Sakalli, Int. J. Theor. Phys. 50, 2426 (2011) arXiv:1103.1728.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Nozari, S. Akhshabi, Phys. Lett. B 700, 91 (2011) arXiv:1104.4849.

    Article  ADS  Google Scholar 

  30. T. Qiu, E.N. Saridakis, Phys. Rev. D 85, 043504 (2012) arXiv:1107.1013.

    Article  ADS  Google Scholar 

  31. M. Visser, JHEP 10, 140 (2011) arXiv:1108.5240.

    Article  ADS  Google Scholar 

  32. K. Nozari, P. Pedram, M. Molkara, Int. J. Theor. Phys. 51, 1268 (2012) arXiv:1111.2204.

    Article  MATH  Google Scholar 

  33. S.H. Mehdipour, A. Keshavarz, EPL 98, 10002 (2012) arXiv:1207.0841.

    Article  ADS  Google Scholar 

  34. M. Li, R.X. Miao, J. Meng, arXiv:1207.0661.

  35. S. Hossenfelder, arXiv:1003.1015.

  36. J.J. Roveto, G. Munoz, arXiv:1201.2475.

  37. P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006) arXiv:gr-qc/0510112.

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Smailagic, E. Spallucci, J. Phys. A 36, L467 (2003) arXiv:hep-th/0307217.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. Smailagic, E. Spallucci, J. Phys. A 36, L517 (2003) arXiv:hep-th/0308193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. A. Smailagic, E. Spallucci, J. Phys. A 37, 7169 (2004) arXiv:hep-th/0406174.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. E. Spallucci, A. Smailagic, P. Nicolini, Phys. Rev. D 73, 084004 (2006) arXiv:hep-th/0604094.

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Banerjee, B. Chakraborty, S. Ghosh, P. Mukherjee, S. Samanta, Found. Phys. 39, 1297 (2009) arXiv:0909.1000.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. R. Banerjee, S. Gangopadhyay, S.K. Modak, Phys. Lett. B 686, 181 (2010) arXiv:0911.2123.

    Article  MathSciNet  ADS  Google Scholar 

  44. L. Modesto, P. Nicolini, Phys. Rev. D 81, 104040 (2010) arXiv:0912.0220.

    Article  ADS  Google Scholar 

  45. P. Nicolini, M. Rinaldi, Phys. Lett. B 695, 303 (2011) arXiv:0910.2860.

    Article  ADS  Google Scholar 

  46. P. Nicolini, Int. J. Mod. Phys. A 24, 1229 (2009) arXiv:0807.1939.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. T. Padmanabhan, Phys. Rev. D 81, 124040 (2010) arXiv:1003.5665.

    Article  ADS  Google Scholar 

  48. K. Nozari, S.H. Mehdipour, Class. Quantum Grav. 25, 175015 (2008) arXiv:0801.4074.

    Article  MathSciNet  ADS  Google Scholar 

  49. K. Nozari, S.H. Mehdipour, JHEP 03, 061 (2009) arXiv:0902.1945.

    Article  MathSciNet  ADS  Google Scholar 

  50. S.H. Mehdipour, Commun. Theor. Phys. 52, 865 (2009).

    Article  ADS  MATH  Google Scholar 

  51. S.H. Mehdipour, Int. J. Mod. Phys. A 25, 5543 (2010) arXiv:1004.1255.

    Article  ADS  MATH  Google Scholar 

  52. S.H. Mehdipour, Phys. Rev. D 81, 124049 (2010) arXiv:1006.5215.

    Article  MathSciNet  ADS  Google Scholar 

  53. S.H. Mehdipour, Can. J. Phys. 90, 425 (2012) arXiv:1204.0143.

    Article  ADS  Google Scholar 

  54. Y.X. Liu, Y.Q. Wang, S.W. Wei, Class. Quantum Grav. 27, 185002 (2010) arXiv:1002.1062.

    Article  MathSciNet  ADS  Google Scholar 

  55. R.J. Adler, P. Chen, D.I. Santiago, Gen. Relativ. Gravit. 33, 2101 (2001) arXiv:gr-qc/0106080.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. M. Gasperini, Phys. Rev. D 38, 2635 (1988).

    Article  ADS  Google Scholar 

  57. M. Gasperini, Phys. Rev. D 39, 3606 (1989).

    Article  ADS  Google Scholar 

  58. G.Z. Adunas, E. Rodriguez-Milla, D.V. Ahluwalia, Phys. Lett. B 485, 215 (2000) arXiv:gr-qc/0006021.

    Article  ADS  Google Scholar 

  59. G.Z. Adunas, E. Rodriguez-Milla, D.V. Ahluwalia, Gen. Relativ. Gravit. 33, 183 (2001) arXiv:gr-qc/0006022.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. J.R. Mureika, Phys. Rev. D 56, 2408 (1997) arXiv:hep-ph/9612391.

    Article  ADS  Google Scholar 

  61. D. Singleton, S. Wilburn, Phys. Rev. Lett. 107, 081102 (2011) arXiv:1102.5564.

    Article  ADS  Google Scholar 

  62. M. Duncan, R. Myrzakulov, D. Singleton, Phys. Lett. B 703, 516 (2011) arXiv:1103.1713.

    Article  ADS  Google Scholar 

  63. K. Nozari, S.H. Mehdipour, Chaos Solitons Fractals 39, 956 (2009) arXiv:hep-th/0610076.

    Article  ADS  Google Scholar 

  64. M.S. El Naschie, Chaos Solitons Fractals 22, 495 (2004).

    Article  ADS  MATH  Google Scholar 

  65. L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, Singapore, 1993).

  66. C. Tsallis, Braz. J. Phys. 29, 1 (1999) arXiv:cond-mat/9903356.

    Article  Google Scholar 

  67. C. Tsallis, E. Brigatti, Continuum Mech. Thermodyn. 16, 223 (2004) arXiv:cond-mat/0305606.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. J.A. Neto, arXiv:1101.2927.

  69. I. Hinchliffe, N. Kersting, Y.L. Ma, Int. J. Mod. Phys. A 19, 179 (2004) arXiv:hep-ph/0205040.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. J.L. Hewett, F.J. Petriello, T.G. Rizzo, Phys. Rev. D 66, 036001 (2002) arXiv:hep-ph/0112003.

    Article  ADS  Google Scholar 

  71. J.M. Conroy, H.J. Kwee, V. Nazaryan, Phys. Rev. D 68, 054004 (2003) arXiv:hep-ph/0305225.

    Article  ADS  Google Scholar 

  72. T. Ohl, J. Reuter, Phys. Rev. D 70, 076007 (2004) arXiv:hep-ph/0406098.

    Article  ADS  Google Scholar 

  73. I. Antoniadis, Phys. Lett. B 246, 377 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  74. J.D. Lykken, Phys. Rev. D 54, 3693 (1996) arXiv:hep-th/9603133.

    Article  MathSciNet  ADS  Google Scholar 

  75. E. Witten, Nucl. Phys. B 471, 135 (1996) arXiv:hep-th/9602070.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998) arXiv:hep-ph/9803315.

    Article  ADS  Google Scholar 

  77. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 436, 257 (1998) arXiv:hep-ph/9804398.

    Article  ADS  Google Scholar 

  78. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) arXiv:hep-ph/9905221.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) arXiv:hep-th/9906064.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl, S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102 (2009).

    Article  ADS  Google Scholar 

  81. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Phys. Rev. D 81, 055003 (2010) arXiv:1002.2141.

    Article  ADS  Google Scholar 

  82. T. Banks, W. Fischler, arXiv:hep-th/9906038.

  83. S. Dimopoulos, G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001) arXiv:hep-ph/0106295.

    Article  ADS  Google Scholar 

  84. S.B. Giddings, S. Thomas, Phys. Rev. D 65, 056010 (2002) arXiv:hep-ph/0106219.

    Article  ADS  Google Scholar 

  85. P. Kanti, Int. J. Mod. Phys. A 19, 4899 (2004) arXiv:hep-ph/0402168.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. T.G. Rizzo, JHEP 06, 079 (2005) arXiv:hep-ph/0503163.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hamid Mehdipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid Mehdipour, S. Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas. Eur. Phys. J. Plus 127, 80 (2012). https://doi.org/10.1140/epjp/i2012-12080-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12080-4

Keywords

Navigation