Skip to main content
Log in

Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An open issue in classical relativistic mechanics is the consistent treatment of the dynamics of classical N-body systems of mutually interacting particles. This refers, in particular, to charged particles subject to EM interactions, including both binary interactions and self-interactions (EM-interacting N-body systems). The correct solution to the question represents an overriding prerequisite for the consistency between classical and quantum mechanics. In this paper it is shown that such a description can be consistently obtained in the context of classical electrodynamics, for the case of a N-body system of classical finite-size charged particles. A variational formulation of the problem is presented, based on the N -body hybrid synchronous Hamilton variational principle. Covariant Lagrangian and Hamiltonian equations of motion for the dynamics of the interacting N-body system are derived, which are proved to be delay-type ODEs. Then, a representation in both standard Lagrangian and Hamiltonian forms is proved to hold, the latter expressed by means of classical Poisson Brackets. The theory developed retains both the covariance with respect to the Lorentz group and the exact Hamiltonian structure of the problem, which is shown to be intrinsically non-local. Different applications of the theory are investigated. The first one concerns the development of a suitable Hamiltonian approximation of the exact equations that retains finite delay-time effects characteristic of the binary interactions and self-EM-interactions. Second, basic consequences concerning the validity of Dirac generator formalism are pointed out, with particular reference to the instant-form representation of Poincaré generators. Finally, a discussion is presented both on the validity and possible extension of the Dirac generator formalism as well as the failure of the so-called Currie “no-interaction” theorem for the non-local Hamiltonian system considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Jackson, Classical Electrodynamics (John Wiley and Sons, 1975).

  2. H. Goldstein, Classical Mechanics, 2nd edition (Addison-Wesley, 1980).

  3. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. P.A.M. Dirac, Proc. Roy. Soc. London A 167, 148 (1938).

    Article  ADS  Google Scholar 

  5. W. Pauli, Theory of Relativity (Pergamon, N.Y., 1958).

  6. R. Feynman, Lectures on Physics, Vol. 2 (Addison-Wesley Publishing Company, Reading, MA, USA, 1970) special reprint (1988).

  7. C. Cremaschini, M. Tessarotto, EPJ Plus 126, 42 (2011).

    ADS  Google Scholar 

  8. C. Cremaschini, M. Tessarotto, EPJ Plus 126, 63 (2011).

    ADS  Google Scholar 

  9. M. Dorigo, M. Tessarotto, P. Nicolini, A. Beklemishev, AIP Conf. Proc. 1084, 152 (2008).

    Article  ADS  Google Scholar 

  10. H.A. Lorentz, Arch. Néderl. Sci. Exactes Nat. 25, 363 (1892).

    Google Scholar 

  11. M. Abraham, Theorie der Elektrizität: Elektromagnetische Strahlung, Vol. II (Teubner, Leiptzig, 1905).

  12. L.D. Landau, E.M. Lifschitz, Field Theory, Theoretical Physics, Vol. 2 (Addison-Wesley, N.Y., 1957).

  13. D.G. Currie, J. Math. Phys. 4, 1470 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D.G. Currie, T.F. Jordan, E.C.G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  15. C. Fronsdal, Phys. Rev. D 4, 1689 (1971).

    Article  ADS  Google Scholar 

  16. A. Komar, Phys. Rev. D 18, 1881 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Komar, Phys. Rev. D 18, 1887 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Komar, Phys. Rev. D 18, 3617 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Komar, Phys. Rev. D 19, 2908 (1979).

    Article  ADS  Google Scholar 

  20. J.S. Nodvik, Ann. Phys. 28, 225 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Tessarotto, C. Cremaschini, P. Nicolini, A. Beklemishev, Proceedings of the 25th RGD International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, 2006, edited by M.S. Ivanov, A.K. Rebrov (Novosibirsk Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2007).

  22. M. Tessarotto, C. Cremaschini, M. Dorigo, P. Nicolini, A. Beklemishev, AIP Conf. Proc. 1084, 158 (2008).

    Article  ADS  Google Scholar 

  23. A.N. Beard, R. Fong, Phys. Rev. 182, 1397 (1969).

    Article  ADS  Google Scholar 

  24. A.F. Kracklauer, J. Math. Phys. 17, 693 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Martin, J.L. Sanz, J. Math. Phys. 19, 780 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Mukunda, E.C.G. Sudarshan, Phys. Rev. D 23, 2210 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  27. A.P. Balachandran, D. Dominici, G. Marmo, N. Mukunda, J. Nilsson, J. Samuel, E.C.G. Sudarshan, F. Zaccaria, Phys. Rev. D 26, 3492 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  28. J.T. Cannon, T.F. Jordan, J. Math. Phys. 5, 299 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. E.C.G. Sudarshan, N. Mukunda, Found. Phys. 13, 385 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Marmo, N. Mukunda, E.C.G. Sudarshan, Phys. Rev. D 30, 2110 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  31. S. De Bièvre, J. Math. Phys. 27, 7 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. F.-B. Li, J. Math. Phys. 31, 1395 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. I.T. Todorov, Ann. Inst. H. Poincaré A 28, 207 (1978).

    ADS  Google Scholar 

  34. Ph. Droz-Vincent, Phys. Scr. 2, 129 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Ph. Droz-Vincent, Ann. Inst. H. Poincaré A 27, 407 (1977).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cremaschini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremaschini, C., Tessarotto, M. Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions. Eur. Phys. J. Plus 127, 4 (2012). https://doi.org/10.1140/epjp/i2012-12004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12004-4

Keywords

Navigation