Skip to main content
Log in

Classical formulations of the electromagnetic self-force of extended charged bodies

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Several formulations of the classical electrodynamics of charged particles, as have been developed in the course of the twentieth century, are compared. The mathematical equivalence of the various dissimilar expressions for the electromagnetic self-force is demonstrated explicitly by deriving these expressions directly from one another. The new connections that are established present the previously published results on a common basis, thereby contributing to a coherent historical picture of the development of charged particle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, M. 1902. Principien der Dynamik des Elektrons. Ann. Phys. (Leipzig) 315: 105-179

    Article  ADS  Google Scholar 

  2. Abramowitz, M. and I.A. Stegun. 1965. Handbook of Mathematical Functions. Dover, New York

  3. Ackerhalt, J.R., P.L. Knight and J.R. Eberly. 1973. Radiation reaction and radiative frequency-shifts. Phys. Rev. Lett. 30: 456-460

    Article  ADS  Google Scholar 

  4. Aguirregabiria, J.M., J. Llosa and A. Molina. 2006. Motion of a classical particle. Phys. Rev. D 73: 125015

    Article  MathSciNet  ADS  Google Scholar 

  5. Ares de Parga, G. 2006. A physical deduction of an equivalent Landau-Lifshitz equation of motion in classical electrodynamics. A new expression for the large distance radiation rate of energy. Found. Phys. 36: 1474-1510

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Barut, A.O. and J.P. Dowling. 1987. Quantum electrodynamics based on self-energy: spontaneous emission in cavities. Phys. Rev. A 36: 649-654

    Article  ADS  Google Scholar 

  7. Barut, A.O. and J.P. Dowling. 1989. QED based on self-fields: a relativistic calculation of g-2. Z. Naturforsch. A 44: 1051-1055

    Google Scholar 

  8. Barut, A.O., J. Kraus, Y. Salamin and N. Ünal. 1992. Relativistic theory of the Lamb shift in self-field quantum electrodynamics. Phys. Rev. A 45: 7740-7745

    Article  ADS  Google Scholar 

  9. Bohm, D. and M. Weinstein. 1948. The self-oscillations of a charged particle. Phys. Rev. 74: 1789-1798

    Article  MATH  ADS  Google Scholar 

  10. Born, M. 1909. Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Ann. Phys. (Leipzig) 335: 1-56

    Article  ADS  Google Scholar 

  11. Bosanac, S.D. 2001. General classical solution for the dynamics of charges with radiation reaction. J. Phys. A 34: 473-490

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Boyer, T.H. 1968. Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174: 1764-1776

    Article  ADS  Google Scholar 

  13. Casimir, H.B.G. 1953. Introductory remarks on quantum electrodynamics. Physica 19: 846-849

    Article  ADS  Google Scholar 

  14. Compagno, G. and F. Persico. 2002. Self-dressing and radiation reaction in classical electrodynamics. J. Phys. A 35: 3629-3645

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Dirac, P.A.M. 1938. Classical theory of radiating electrons. Proc. R. Soc. London A 167: 148-169

    Article  ADS  Google Scholar 

  16. Epp, R.J., R.B. Mann and P.L. McGrath. 2009. Rigid motion revisited: rigid quasilocal frames. Classical Quant. Grav. 26: 035015

    Article  MathSciNet  ADS  Google Scholar 

  17. Erber, T. 1961. The classical theories of radiation reaction. Fortschr. Phys. 9: 343-392

    Article  MathSciNet  MATH  Google Scholar 

  18. Fermi, E. 1921. Sulla dinamica di un sistema rigido di cariche elettriche in moto traslatorio. Nuovo Cimento 22: 199-207

    Article  Google Scholar 

  19. Fermi, E. 1923. Correzione di una contraddizione tra la teoria elettrodinamica e quella relativistica delle masse elettromagnetiche. Nuovo Cimento 25: 159-170

    Article  Google Scholar 

  20. Fermi, E. 1927. Sul meccanismo dell’emissione nella meccanica ondulatoria. Rend. Lincei 5: 795-800

    MATH  Google Scholar 

  21. Ford, G.W. and R.F. O’Connell. 1991. Radiation reaction in electrodynamics and the elimination of runaway solutions. Phys. Lett. A 157: 217-220

    Article  ADS  Google Scholar 

  22. Gill, T.L., W.W. Zachary and J. Lindesay. 2001. The classical electron problem. Found. Phys. 31: 1299-1355

    Article  MathSciNet  Google Scholar 

  23. Gralla, S.E., A.I. Harte and R.M. Wald. 2009. Rigourous derivation of electromagnetic self-force. Phys. Rev. D 80: 024031

    Article  ADS  Google Scholar 

  24. Hammond, R.T. 2013. Electrodynamics and radiation reaction. Found. Phys. 43: 201-209

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Hansen, E.R. 1975. A Table of Series and Products. Prentice-Hall, Englewood Cliffs. pp. 5 and 124

  26. Herglotz, G. 1903. Zur Elektronentheorie. Nachr. Ges. Wiss. Göttingen 1903: 357-382

    MATH  Google Scholar 

  27. Hnizdo, V. 2000. The electromagnetic self-force on a charged spherical body slowly undergoing a small, temporary displacement from a position of rest. J. Phys. A 33: 4095-4103

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Jackson, J.D. 1999. Classical Electrodynamics, 3rd edn. Wiley, New York

  29. Janssen, M. and M. Mecklenburg. 2006. From classical to relativistic mechanics: electromagnetic models of the electron. In: V.F. Hendricks, K.F. Jørgenson, J. Lützen and S.A. Pedersen (eds.) Interactions: Mathematics, Physics and Philosophy, 1860-1930, Springer, Dordrecht, pp. 65-134

  30. Jiménez, J.L. and I. Campos. 1999. Models of the classical electron after a century. Found. Phys. Lett. 12: 127-146

    Article  Google Scholar 

  31. Kholmetskii, A.L. 2006. On “gauge renormalization” in classical electrodynamics. Found. Phys. 36: 715-744

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Landau, L.D. and E.M. Lifshitz. 1975. Classical Theory of Fields, 4th rev. edn. Pergamon, Oxford. Section 76

  33. Leonardt, U. and W.M.R. Simpson. 2011. Exact solution for the Casimir stress in a spherically symmetric medium. Phys. Rev. D 84: 081701(R)

    Article  ADS  Google Scholar 

  34. Lorentz, H.A. 1916. The Theory of Electrons, 2nd edn. Teubner, Leipzig

  35. Luke, Y.L. 1962. Integrals of Bessel Functions. McGraw-Hill, London. p. 28

  36. Lyle, S.N. 2010. Self-Force and Inertia. Springer, Berlin. Chap. 12

  37. Martins, A.A. and M.J. Pinheiro. 2008. On the electromagnetic origin of inertia and inertial mass. Int. J. Theor. Phys. 47: 2706-2715

    Article  MathSciNet  MATH  Google Scholar 

  38. Medina, R. 2006. Radiation reaction of a classical quasi-rigid extended particle. J. Phys. A 39: 3801-3816

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Milonni, P.W., J.R. Ackerhalt and W.A. Smith. 1973. Interpretation of radiative corrections in spontaneous emission. Phys. Rev. Lett. 31: 958-960

    Article  ADS  Google Scholar 

  40. Milton, K.A. 1980. Semiclassical electron models: Casimir self-stress in dielectric and conducting balls. Ann. Phys. (New York) 127: 49-61

    Article  MathSciNet  ADS  Google Scholar 

  41. Milton, K.A., L.L. DeRaad Jr., and J. Schwinger. 1978. Casimir self-stress on a perfectly conducting spherical shell. Ann. Phys. (New York) 115: 388-403

    Article  MathSciNet  ADS  Google Scholar 

  42. Moniz, E.J. and D.H. Sharp. 1977. Radiation reaction in nonrelativistic quantum mechanics. Phys. Rev. D 15: 2850-2865

    Article  ADS  Google Scholar 

  43. Morse, P.M. and H. Feshbach. 1953. Methods of Theoretical Physics. McGraw-Hill, New York. Part 2, p. 1255

  44. Noja, D. and A. Posilicano. 1999. On the point limit of the Pauli-Fierz model. Ann. Inst. Henri Poincaré A 71: 425-457

    MathSciNet  MATH  Google Scholar 

  45. Oliver, M.A. 1998. Classical electrodynamics of a point particle. Found. Phys. Lett. 11: 61-82

    Article  MathSciNet  Google Scholar 

  46. Ori, A. and E. Rosenthal. 2004. Calculation of the self force using the extended-object approach. J. Math. Phys. 45: 2347-2364

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Panofsky, W.K.H. and M. Phillips. 2005. Classical Electricity and Magnetism, 2nd edn. Dover, Mineola

  48. Pierce, E. 2007. The lock and key paradox and the limits of rigidity in special relativity. Am. J. Phys. 75: 610-614

    Article  ADS  Google Scholar 

  49. Poincaré, M.H. 1906. On the dynamics of the electron. Rend. Circ. Mat. Palermo 21: 129-176

    Article  MATH  Google Scholar 

  50. Prigogine, I. and F. Henin. 1962. Motion of a relativistic charged particle. Physica 28: 667-688

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Puthoff, H.E. 2007. Casimir vacuum energy and the semiclassical electron. Int. J. Theor. Phys. 46: 3005-3008

    Article  MATH  Google Scholar 

  52. Roa-Neri, J.A.E. and J.L. Jiménez. 1993. On the classical dynamics of non-rotating extended charges. Nuovo Cimento B 108: 853-869

    Article  ADS  Google Scholar 

  53. Roa-Neri, J.A.E. and J.L. Jiménez. 2002. An alternative approach to the classical dynamics of an extended charged particle. Found. Phys. 32: 1617-1634

    Article  MathSciNet  Google Scholar 

  54. Rohrlich, F. 2002. Dynamics of a classical quasi-point charge. Phys. Lett. A 303: 307-310

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Rohrlich, F. 2007. Classical Charged Particles, 3rd edn. World Scientific, New Jersey. Section 6-3

  56. Schott, G.A. 1908. Über den Einfluß von Unstetigkeiten bei der Bewegung von Elektronen. Ann. Phys. (Leipzig) 330: 63-91

    Article  ADS  Google Scholar 

  57. Senitzky, I.R. 1973. Radiation-reaction and vacuum-field effects in Heisenberg-picture quantum electrodynamics. Phys. Rev. Lett. 31: 955-958

    Article  ADS  Google Scholar 

  58. Slater, L.J. 1966. Generalized Hypergeometric Functions. Cambridge University Press, Cambridge

  59. Smorenburg, P.W., L.P.J. Kamp, G.A. Geloni and O.J. Luiten. 2010. Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches. Laser Part. Beams 28: 553-562

    Article  ADS  Google Scholar 

  60. Smorenburg, P.W., L.P.J. Kamp and O.J. Luiten. 2013. Ponderomotive manipulation of cold subwavelength plasmas. Phys. Rev. E 87: 023101

    Article  ADS  Google Scholar 

  61. Sommerfeld, A. 1904a. Simplified deduction of the field and forces of an electron moving in any given way. Proc. K. Akad. Wet. Amsterdam, Sect. Sci. 7: 346-367. (English translation)

    ADS  Google Scholar 

  62. Sommerfeld, A. 1904b. Zur Elektronentheorie. Nachr. Ges. Wiss. Göttingen 1904: 99-439

    MATH  Google Scholar 

  63. Stratton, J.A. 1941. Electromagnetic Theory. McGraw-Hill, London. Section 7.8

  64. Villarroel, D. 2006. Enlarged Lorentz-Dirac equations. J. Phys. A 39: 8543-8556

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Watson, G.N. 1966. A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge. p. 528

  66. Whittaker, E.T. and G.N. Watson. 1962. A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge

  67. Wildermuth, K. 1955. Zur physikalischen Interpretation der Elektronenselbstbeschleunigung. Z. Naturforsch. A 10: 450-459

    MATH  ADS  Google Scholar 

  68. Wolfram. 2012a. http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/21/01/02/01/01/01/ and .../Hypergeometric4F3/17/02/01/0002/. Accessed 12 November 2012

  69. Wolfram. 2012b. http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric3F2/03/02/03/0003/ and .../Hypergeometric4F3/03/02/05/0002/. Accessed 12 November 2012

  70. Yaghjian, A.D. 2006. Relativistic Dynamics of a Charged Sphere, 2nd edn. Springer, New York

  71. Zygmund, A. 1968. Trigonometric Series, 2nd edn. Cambridge University Press, Cambridge. Vol. 2, p. 243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.W. Smorenburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smorenburg, P., Kamp, L. & Luiten, O. Classical formulations of the electromagnetic self-force of extended charged bodies. EPJ H 39, 283–302 (2014). https://doi.org/10.1140/epjh/e2014-50015-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2014-50015-2

Keywords

Navigation