Skip to main content
Log in

The reduced phase space of an open string in the background B-field

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

The problem of an open string in background B-field is discussed. Using the discretized model in details we show that the system is influenced by an infinite number of second class constraints. We interpret the allowed Fourier modes as the coordinates of the reduced phase space. This enables us to compute the Dirac brackets more easily. We prove that the coordinates of the string are non-commutative at the boundaries. We argue that in order to find the Dirac bracket or commutator algebra of the physical variables, one should not expand the fields in terms of the solutions of the equations of motion. Instead, one should impose a set of constraints in suitable coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, Lecture Notes on Quantum Mechanics, Yeshiva University New York, 1964; see also P.A.M. Dirac, Proc. Roy. Soc. London, Ser. A 246, 326 (1950)

    MathSciNet  Google Scholar 

  2. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princton Univ. Press, 1992)

  3. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, J. High Energy Phys. 02, 016 (1999) [hep-th/9810072]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, Nucl. Phys. B 576, 578 (2000) [hep-th/9906161]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. C.-S. Chu, P.-M. Ho, Nucl. Phys. B 568, 447 (2000) [hep-th/9906192]

    Article  MATH  ADS  Google Scholar 

  6. N. Seiberg, E. Witten, J. High Energy Phys. 09, 032 (1999) [hep-th/9908142]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. V. Schomerus, J. High Energy Phys. 06, 030 (1999) [hep-th/9903205]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. A. Abouelsaood, C.G. Callan, C.R. Nappi, S.A. Yost, Nucl. Phys. B 280, 599 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  9. M.M. Sheikh-Jabbari, A. Shirzad, Eur. Phys. J. C 19, 383 (2001) [hep-th/9907055]

    MATH  MathSciNet  ADS  Google Scholar 

  10. W.T. Kim, J.J. Oh, Mod. Phys. Lett. A 15, 1597 (2000) [hep-th/9911085]

    Article  MATH  ADS  Google Scholar 

  11. N.R.F. Braga, C.F.L. Godinho, Phys. Rev. D 65, 085030 (2002) [hep-th/0110297]

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Lee, Phys. Rev. D 62, 024022 (2000) [hep-th/9911140]

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Lee, Phys. Lett. B 483, 277 (2000) [hep-th/0004159]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. A. Kokado, G. Konisi, T. Saito, Prog. Theor. Phys. 104, 1289 (2000) [hep-th/0009190]

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Banerjee, B. Chakraborty, S. Ghosh, Phys. Lett. B 537, 340 (2002) [hep-th/0203199]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. W. He, L. Zhao, Phys. Lett. B 570, 251 (2003) [hep-th/0307002]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. F. Loran, A. Shirzad, Int. J. Mod. Phys. A 17, 625 (2002) [hep-th/0003010]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Z. Yin, Phys. Lett. B 466, 234 (1999) [hep-th/9908152]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. F. Loran, Phys. Lett. B 544, 199 (2002) [hep-th/0207025]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. K.I. Tezuka, Eur. Phys. J. C 25, 465 (2002) [hep-th/ 0201171]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. J. Jing, Z.-W. Long, L.-J. Tian, S. Jin, Eur. Phys. J. C 29, 447 (2003)

    Article  MATH  ADS  Google Scholar 

  22. C.-S. Chu, P.-M. Ho, Nucl. Phys. B 550, 151 (1999) [hep-th/9812219]

    Article  MATH  ADS  Google Scholar 

  23. C.-S. Chu, F. Zamora, J. High Energy Phys. 02, 022 (2000) [hep-th/9912153]

    Article  MATH  ADS  Google Scholar 

  24. L. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Jing, Eur. Phys. J. C 39, 123 (2005)

    Article  ADS  Google Scholar 

  26. J. Jing, Phys. Rev. D 71, 025023 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Kawamoto, N. Sasakura, J. High Energy Phys. 07, 014 (2000) [hep-th/0005123]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. A. Das, A. Melikyan, J. Maharana, J. High Energy Phys. 04, 016 (2001) [hep-th/0103229]

    Article  ADS  Google Scholar 

  29. R. Banerjee, B. Chakraborty, K. Kumar, Nucl. Phys. B 668, 179 (2003) [hep-th/0306122]

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dehghani.

Additional information

PACS

11.10.Ef, 04.60.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghani, M., Shirzad, A. The reduced phase space of an open string in the background B-field. Eur. Phys. J. C 48, 315–325 (2006). https://doi.org/10.1140/epjc/s2006-02622-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02622-7

Keywords

Navigation