Skip to main content
Log in

Measurement of charm fragmentation ratios and fractionsin photoproduction at HERA

  • Experimental Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

The production of \(D^{\ast + }\), D0, D + , D s + and \(\Lambda_c^ + \) charm hadrons and their antiparticles in e p scattering at HERA was measured with the ZEUS detector using an integrated luminosity of \(79 \rm {pb}^{-1}\). The measurement has been performed in the photoproduction regime with the exchanged-photon virtuality \(Q^2 < 1 \rm {GeV}^2\) and for photon-proton centre-of-mass energies in the range \(130 < W < 300 \rm {GeV}\). The charm hadrons were reconstructed in the range of transverse momentum \(p_T(D,\Lambda_c) > 3.8 \rm {GeV}\) and pseudorapidity \(\vert\eta(D,\Lambda_c)\vert < 1.6\). The production cross sections were used to determine the ratio of neutral and charged D-meson production rates, \(\smash{R_{u/d}}\), the strangeness-suppression factor, \(\gamma_s\), and the fraction of charged D mesons produced in a vector state, \(\smash{P^d_{\rm v}}\). The measured \(\smash{R_{u/d}}\) and \(\smash{\gamma_s}\) values agree with those obtained in deep inelastic scattering and in e + e- annihilations. The measured \(\smash{P^d_{\rm v}}\) value is smaller than, but consistent with, the previous measurements. The fractions of c quarks hadronising as a particular charm hadron, \(f(c \rightarrow D, \Lambda_c)\), were derived in the given kinematic range. The measured open-charm fragmentation fractions are consistent with previous results, although the measured \(f(c\rightarrow D^{* + })\) is smaller and \(f(c\rightarrow \Lambda_c^ + )\) is larger than those obtained in e + e- annihilations. These results generally support the hypothesis that fragmentation proceeds independently of the hard sub-process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZEUS Collab., J. Breitweg et al. , Eur. Phys. J. C 6, 67 (1999)

    Article  Google Scholar 

  2. H1 Collab., C. Adloff et al. , Nucl. Phys. B 545, 21 (1999)

    Article  Google Scholar 

  3. ZEUS Collab., J. Breitweg et al. , Eur. Phys. J. C 12, 35 (2000)

    Google Scholar 

  4. ZEUS Collab., J. Breitweg et al. , Phys. Lett. B 481, 213 (2000)

    Article  Google Scholar 

  5. H1 Collab., C. Adloff et al. , Phys. Lett. B 528, 199 (2002)

    Article  Google Scholar 

  6. H1 Collab., A. Aktas et al. , Eur. Phys. J. C 38, 447 (2005)

    Article  Google Scholar 

  7. L. Gladilin, Preprint hep-ex/9912064 (1999)

  8. Particle Data Group, S. Eidelman et al. , Phys. Lett. B 592, 1 (2004)

    Article  Google Scholar 

  9. ZEUS Collab., U. Holm (ed.), The ZEUS Detector, Status Report (unpublished), DESY (1993), available on http:/www-zeus.desy.debluebookbluebook.html

  10. N. Harnew et al. , Nucl. Instrum. Methods A 279, 290 (1989)

    Article  Google Scholar 

  11. B. Foster et al. , Nucl. Phys. Proc. Suppl. B 32, 181 (1993)

    Article  Google Scholar 

  12. B. Foster et al. , Nucl. Instrum. Methods A 338, 254 (1994)

    Article  Google Scholar 

  13. ZEUS Collab., J. Breitweg et al. , Eur. Phys. J. C 18, 625 (2001)

    Google Scholar 

  14. M. Derrick et al. , Nucl. Instrum. Methods A 309, 77 (1991)

    Article  Google Scholar 

  15. A. Andresen et al. , Nucl. Instrum. Methods A 309, 101 (1991)

    Article  Google Scholar 

  16. A. Caldwell et al. , Nucl. Instrum. Methods A 321, 356 (1992)

    Article  Google Scholar 

  17. A. Bernstein et al. , Nucl. Instrum. Methods A 336, 23 (1993)

    Article  Google Scholar 

  18. J. Andruszków et al. , Preprint DESY-92-066 , DESY, 1992

  19. ZEUS Collab., M. Derrick et al. , Z. Phys. C 63, 391 (1994)

    Article  Google Scholar 

  20. J. Andruszków et al. , Acta Phys. Pol. B 32, 2025 (2001)

    Google Scholar 

  21. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  Google Scholar 

  22. H. Jung, Comput. Phys. Commun. 86, 147 (1995)

    Article  Google Scholar 

  23. G. Marchesini et al. , Comput. Phys. Commun. 67, 465 (1992)

    Article  Google Scholar 

  24. G. Corcella et al. , JHEP 0101, 010 (2001)

    Google Scholar 

  25. CTEQ Collab., H.L. Lai et al. , Eur. Phys. J. C 12, 375 (2000)

    Article  Google Scholar 

  26. M. Glück, E. Reya and A. Vogt, Phys. Rev. D 46, 1973 (1992)

    Article  Google Scholar 

  27. B. Andersson et al. , Phys. Rep. 97, 31 (1983)

    Article  Google Scholar 

  28. M.G. Bowler, Z. Phys. C 11, 169 (1981)

    Article  Google Scholar 

  29. B. Andersson, G. Gustafson and B. Söderberg, Z. Phys. C 20, 317 (1983)

    Article  Google Scholar 

  30. B.R. Webber, Nucl. Phys. B 238, 492 (1984)

    Article  Google Scholar 

  31. ZEUS Collab., S. Chekanov et al. , Eur. Phys. J. C 38, 29 (2004)

    Article  Google Scholar 

  32. R. Brun et al. , geant3, Technical Report CERN-DD/EE/84-1, CERN, 1987

  33. W.H. Smith, K. Tokushuku and L.W. Wiggers, Proc. Computing in High-Energy Physics (CHEP), Annecy, France, Sept. 1992, C. Verkerk and W. Wojcik (eds.), p. 222. CERN, Geneva, Switzerland (1992). Also in preprint DESY 92-150B

  34. ZEUS Collab., M. Derrick et al. , Phys. Lett. B 322, 287 (1994)

    Article  Google Scholar 

  35. F. Jacquet and A. Blondel, Proceedings of the Study for an ep Facility for Europe, U. Amaldi (ed.), p. 391. Hamburg, Germany (1979). Also in preprint DESY 79/48

  36. G.M. Briskin. Ph.D. Thesis, Tel Aviv University, (1998). (Unpublished)

  37. ZEUS Collab., M. Derrick et al. , Phys. Lett. B 349, 225 (1995)

    Article  Google Scholar 

  38. D. Bailey and R. Hall-Wilton, Nucl. Instrum. Methods A 515, 37 (2003)

    Article  Google Scholar 

  39. ALEPH Collab., D. Buskulic et al. , Phys. Lett. B 388, 648 (1996)

    Article  Google Scholar 

  40. OPAL Collab., K. Ackerstaff et al. , Eur. Phys. J. C 1, 439 (1997)

    Google Scholar 

  41. T. Sjöstrand, Comput. Phys. Commun. 39, 347 (1986)

    Article  Google Scholar 

  42. T. Sjöstrand and M. Bengtsson, Comput. Phys. Commun. 43, 367 (1987)

    Article  Google Scholar 

  43. F. Becattini, Z. Phys. C 69, 485 (1996)

    Article  Google Scholar 

  44. Yi-Jin Pei, Z. Phys. C 72, 39 (1996)

    Article  Google Scholar 

  45. A.V. Berezhnoy, V.V. Kiselev and A.K. Likhoded, Phys. Rev. D 62, 074013 (2000)

    Article  Google Scholar 

  46. A.V. Berezhnoy and A.K. Likhoded. Private communication

  47. OPAL Collab., G. Alexander et al. , Z. Phys. C 72, 1 (1996)

    Article  Google Scholar 

  48. B. Kapeliovich and B. Povh, Phys. Lett. B 446, 321 (1999)

    Article  Google Scholar 

  49. G.T. Garvey, B.Z. Kapeliovich and B. Povh, Preprint hep-ph/0006325 (2000)

  50. C. Peterson et al. , Phys. Rev. D 27, 105 (1983)

    Article  Google Scholar 

Download references

Author information

Consortia

Additional information

Received: 12 August 2005, Revised: 8 September 2005, Published online: 6 October 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

The ZEUS Collaboration. Measurement of charm fragmentation ratios and fractionsin photoproduction at HERA. Eur. Phys. J. C 44, 351–366 (2005). https://doi.org/10.1140/epjc/s2005-02397-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2005-02397-3

Keywords

Navigation