Skip to main content
Log in

QGP and modified jet fragmentation

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Recent progress in the study of jet modification in hot medium and its consequences in high-energy heavy-ion collisions is reviewed. In particular, I will discuss energy loss for propagating heavy quarks and the resulting modified fragmentation function. Medium modification of the parton fragmentation function due to quark recombination is formulated within finite temperature field theory and the implication for the search for a deconfined quark-gluon plasma is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gyulassy, M. Plümer, Phys. Lett. B 243, 432 (1990)

    Article  Google Scholar 

  2. X.-N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)

    Article  PubMed  Google Scholar 

  3. M. Gyulassy, X.-N. Wang, Nucl. Phys. B 420, 583 (1994); X.-N. Wang, M. Gyulassy, M. Plümer, Phys. Rev. D 51, 3436 (1995)

    Article  Google Scholar 

  4. R. Baier et al. , Nucl. Phys. B 483, 291 (1997); B 484, 265 (1997); Phys. Rev. C 58, 1706 (1998)

    Article  Google Scholar 

  5. B.G. Zhakharov, JETP Lett. 63, 952 (1996)

    Article  Google Scholar 

  6. M. Gyulassy, P. Lévai, I. Vitev, Nucl. Phys. B 594, 371 (2001); Phys. Rev. Lett. 85, 5535 (2000)

    Article  Google Scholar 

  7. U. Wiedemann, Nucl. Phys. B 588, 303 (2000); A 690, 731 (2001)

    Article  Google Scholar 

  8. R. Baier, Y.L. Dokshitzer, A.H. Mueller, D. Schiff, Phys. Rev. C 60, 064902 (1999)

    Article  Google Scholar 

  9. X.-N. Wang, Z. Huang, I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996); X.-N. Wang, Z. Huang, Phys. Rev. C 55, 3047 (1997)

    Article  PubMed  Google Scholar 

  10. K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 022301 (2002)

    Article  PubMed  Google Scholar 

  11. C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 89, 202301 (2002)

    Article  PubMed  Google Scholar 

  12. X.N. Wang, Phys. Lett. B 595, 165 (2004)

    Article  Google Scholar 

  13. X.N. Wang, Phys. Lett. B 579, 299 (2004)

    Article  Google Scholar 

  14. D. d’Enterria, Eur. Phys. J. C 43, (2005) [nucl-ex/0504001]

  15. S.S. Adler et al. , Phys. Rev. Lett. 91, 072301 (2003); Phys. Rev. C 69, 034910 (2004)

    Article  PubMed  Google Scholar 

  16. J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 172302 (2003)

    Article  PubMed  Google Scholar 

  17. X.-N. Wang, Phys. Rev. C 63, 054902 (2001)

    Article  Google Scholar 

  18. M. Gyulassy, I. Vitev, X.-N. Wang, Phys. Rev. Lett. 86, 2537 (2001)

    Article  PubMed  Google Scholar 

  19. C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 032301 (2003)

    Article  PubMed  Google Scholar 

  20. R. Snellings, nucl-ex/0305001

  21. C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 082302 (2003)

    Article  PubMed  Google Scholar 

  22. E. Wang, X.-N. Wang, Phys. Rev. Lett. 89, 162301 (2002)

    Article  PubMed  Google Scholar 

  23. B.W. Zhang, E. Wang, X.N. Wang, Phys. Rev. Lett. 93, 072301 (2004); hep-ph/0412060

    Article  PubMed  Google Scholar 

  24. Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001)

    Article  Google Scholar 

  25. X.F. Guo, X.-N. Wang, Phys. Rev. Lett. 85, 3591 (2000); X.-N. Wang, X.F. Guo, Nucl. Phys. A 696, 788 (2001)

    Article  PubMed  Google Scholar 

  26. X.N. Wang, Phys. Rev. C 58, 2321 (1998) [hep-ph/9804357]

    Article  Google Scholar 

  27. Q. Wang, X.N. Wang, Phys. Rev. C 71, 014903 (2005)

    Article  Google Scholar 

  28. K.J. Eskola, H. Honkanen, C.A. Salgado, U.A. Wiedemann, Nucl. Phys. A 747, 511 (2005)

    Article  Google Scholar 

  29. A. Majumder, X.N. Wang, Phys. Rev. D 70, 014007 (2004); hep-ph/0411174

    Article  Google Scholar 

  30. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rept. 97, 31 (1983); T. Sjostrand, hep-ph/9508391

    Article  Google Scholar 

  31. A. Majumder, E. Wang, X.N. Wang, nucl-th/0412061; A. Majumder, nucl-th/0503019

  32. E. Wang, X.N. Wang, Phys. Rev. Lett. 87, 142301 (2001)

    Google Scholar 

  33. S.S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 69, 034909 (2004)

    Article  Google Scholar 

  34. J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 92, 052302 (2004)

    Article  PubMed  Google Scholar 

  35. R.C. Hwa, C.B. Yang, Phys. Rev. C 67, 034902 (2003) [nucl-th/0211010]; C 70, 024905 (2004)

    Article  Google Scholar 

  36. R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003)

    Article  PubMed  Google Scholar 

  37. A. Majumder, E. Wang, X.-N. Wang, to be published

  38. J.A. Osborne, E. Wang, X.N. Wang, Phys. Rev. D 67, 094022 (2003)

    Article  Google Scholar 

  39. N. Armesto, A. Dainese, C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 71, 054027 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Nian Wang.

Additional information

Arrival of the final proofs: 20 July 2005

PACS:

13.87.Fh, 12.38.Bx, 12.38.Mh, 11.80.La

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XN. QGP and modified jet fragmentation. Eur. Phys. J. C 43, 223–231 (2005). https://doi.org/10.1140/epjc/s2005-02265-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2005-02265-2

Keywords

Navigation