Skip to main content
Log in

Gluino pair production in high-energy photon collisions

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We study the potential of high-energy photon colliders for the production of gluino pairs within the minimal supersymmetric standard model (MSSM). In this model, the process \(\gamma\gamma\to\tilde{g}\tilde{g}\) is mediated by quark/squark box diagrams with enhancements for up-type quarks/squarks from their larger charges and for third generation squarks from their large mass splittings, generated by the mixing of left- and right-handed states. Far above threshold and in scenarios with very heavy squarks, resolved photons can contribute significantly at tree level. Taking into account the laser photon backscattering spectrum, electron and laser beam polarization effects, and current mass exclusion limits, we find that gluino pair production in high-energy photon collisions should be visible over large regions of the MSSM parameter space, contrary to what has been found for e + e - annihilation. In addition, the cross section rises rather steeply, so that a gluino mass determination with a precision of a few GeV should be feasible for a wide range of post-LEP benchmark points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Phys. Rept. 110, 1 (1984)

    Article  Google Scholar 

  2. H.E. Haber, G.L. Kane, Phys. Rept. 117, 75 (1985)

    Article  Google Scholar 

  3. M. Carena et al. [Higgs Working Group Collaboration], hep-ph/0010338

  4. S. Abel et al. [SUGRA Working Group Collaboration], hep-ph/0003154

  5. R. Culbertson et al. [Gauge Mediation Working Group Collaboration], hep-ph/0008070

  6. S. Ambrosanio et al. [BMSSM Working Group Collaboration], hep-ph/0006162

  7. B. Allanach et al. [RPV Working Group Collaboration], hep-ph/9906224

  8. A. Airapetian et al. [ATLAS Collaboration], CERN-LHCC-99-15

  9. S. Abdullin et al. [CMS Collaboration], J. Phys. G 28, 469 (2002)

    Google Scholar 

  10. J.A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], hep-ph/0106315

  11. S. Berge, M. Klasen, Phys. Rev. D 66, 115014 (2002)

    Article  Google Scholar 

  12. S. Berge, M. Klasen, contribution to SUSY 02, hep-ph/0210420

  13. G. Jikia, S. Söldner-Rembold, Nucl. Phys. Proc. Suppl. 82, 373 (2000)

    Article  Google Scholar 

  14. M. Melles, W.J. Stirling, V.A. Khoze, Phys. Rev. D 61, 054015 (2000)

    Article  Google Scholar 

  15. P. Niezurawski, A.F. Zarnecki, M. Krawczyk, Acta Phys. Polon. B 34, 177 (2003)

    Google Scholar 

  16. M.M. Mühlleitner, M. Krämer, M. Spira, P.M. Zerwas, Phys. Lett. B 508, 311 (2001)

    Article  Google Scholar 

  17. S. Chakrabarti, D. Choudhury, R.M. Godbole, B. Mukhopadhyaya, Phys. Lett. B 434, 347 (1998)

    Article  Google Scholar 

  18. S. Berge, M. Klasen, Y. Umeda, Phys. Rev. D 63, 035003 (2001)

    Article  Google Scholar 

  19. M. Klasen, Nucl. Instrum. Meth. A 472, 160 (2001)

    Article  Google Scholar 

  20. B. Badelek et al. [ECFA/DESY Photon Collider Working Group Collaboration], hep-ex/0108012

  21. I.F. Ginzburg, G.L. Kotkin, S.L. Panfil, V.G. Serbo, V.I. Telnov, Nucl. Instrum. Meth. A 219, 5 (1984)

    Article  Google Scholar 

  22. K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

  23. T. Affolder et al. [CDF Collaboration], Phys. Rev. Lett. 88, 041801 (2002)

    Article  Google Scholar 

  24. S. Abachi et al. [D0 Collaboration], Phys. Rev. Lett. 75, 618 (1995)

    Article  Google Scholar 

  25. M. Felcini, C. Tully et al. [LEP Higgs Working Group Collaboration], Note 2001-04, hep-ex/0107030

  26. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002)

    Article  MATH  Google Scholar 

  27. J. Abdallah et al. [LEP SUSY Working Group Collaboration], http://lepsusy.web.cern.ch/lepsusy

  28. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990)

    Article  MathSciNet  Google Scholar 

  29. T. Hahn, Comput. Phys. Commun. 140, 418 (2001)

    Article  MATH  Google Scholar 

  30. G.J. van Oldenborgh, J.A. Vermaseren, Z. Phys. C 46, 425 (1990)

    Google Scholar 

  31. G.J. van Oldenborgh, Comput. Phys. Commun. 66, 1 (1991)

    Article  MATH  Google Scholar 

  32. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999)

    Article  Google Scholar 

  33. S.P. Li, H.C. Liu, D. Silverman, Phys. Rev. D 31, 1736 (1985)

    Article  Google Scholar 

  34. S. Dawson, E. Eichten, C. Quigg, Phys. Rev. D 31, 1581 (1985)

    Article  Google Scholar 

  35. M. Glück, E. Reya, A. Vogt, Phys. Rev. D 46, 1973 (1992)

    Article  Google Scholar 

  36. H. Burkhardt, V. Telnov, CERN-SL-2002-013-AP

  37. M. Battaglia et al., Eur. Phys. J. C 22, 535 (2001)

    Article  Google Scholar 

  38. G.A. Schuler, T. Sjostrand, Z. Phys. C 68, 607 (1995)

    Google Scholar 

  39. M. Klasen, Rev. Mod. Phys. 74, 1221 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Klasen.

Additional information

Received: 5 March 2002, Published online: 8 July 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berge, S., Klasen, M. Gluino pair production in high-energy photon collisions. Eur. Phys. J. C 30, 123–133 (2003). https://doi.org/10.1140/epjc/s2003-01194-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2003-01194-4

Keywords

Navigation