Skip to main content
Log in

Anomalous dimensions and scalar glueball spectroscopy in AdS/QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

An extended version of the AdS/QCD soft-wall model that incorporates QCD-like anomalous contributions to the dimensions of gauge theory operators is proposed. This exploratory approach leads to a relation between scalar glueball masses and beta functions. Using this relation, the properties of the glueball mass spectroscopy that emerge from phenomenological beta functions proposed in the literature are investigated. The reverse problem is also considered: starting from a linear Regge trajectory which fits the lattice glueball masses, beta functions with different asymptotic infrared behaviors are found. Remarkably, some of them present a fixed point at finite coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. With a negative dilaton parameter and keeping the value (2.17), one gets even smaller masses \(m_{G_{n}}^{2}=4|c|(n+1)\) [42].

  2. Note that the WA estimate was obtained from many various processes involving quark flavors (τ and heavy quarkonia decays, lattice QCD, deep inelastic scattering, etc.).

  3. While b 1 in (3.14) has nothing to do with \(b_{1}^{(\mathrm{pert})}\) of the perturbative QCD beta function, let us remark that they seem numerically close (\(b_{1}^{(\mathrm{pert})}\approx0.9\times10^{-3}\) for n f =0). Nevertheless, the shape of the 5d potential displayed in Fig. 2 is very sensitive to the value of b 1.

References

  1. G. ’t Hooft, A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  2. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  3. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    MathSciNet  ADS  MATH  Google Scholar 

  6. J. Polchinski, M.J. Strassler, Hard scattering and gauge/string duality. Phys. Rev. Lett. 88, 031601 (2002). arXiv:hep-th/0109174

    Article  MathSciNet  ADS  Google Scholar 

  7. V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze, Automodellism in the large-angle elastic scattering and structure of hadrons. Lett. Nuovo Cimento 7, 719 (1973)

    Article  Google Scholar 

  8. S.J. Brodsky, G.R. Farrar, Scaling laws at large transverse momentum. Phys. Rev. Lett. 31, 1153 (1973)

    Article  ADS  Google Scholar 

  9. S.J. Brodsky, G.R. Farrar, Scaling laws for large momentum transfer processes. Phys. Rev. D 11, 1309 (1975)

    Article  ADS  Google Scholar 

  10. H. Boschi-Filho, N.R.F. Braga, QCD/String holographic mapping and glueball mass spectrum. Eur. Phys. J. C 32, 529 (2004). arXiv:hep-th/0209080

    Article  ADS  Google Scholar 

  11. H. Boschi-Filho, N.R.F. Braga, Gauge/string duality and scalar glueball mass ratios. J. High Energy Phys. 0305, 009 (2003). arXiv:hep-th/0212207

    Article  MathSciNet  ADS  Google Scholar 

  12. G.F. de Teramond, S.J. Brodsky, The hadronic spectrum of a holographic dual of QCD. Phys. Rev. Lett. 94, 201601 (2005). arXiv:hep-th/0501022

    Article  ADS  Google Scholar 

  13. Erlich et al., QCD and a holographic model of hadrons. Phys. Rev. Lett. 95, 261602 (2005)

    Article  ADS  Google Scholar 

  14. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Linear confinement and AdS/QCD. Phys. Rev. D 74, 015005 (2006). arXiv:hep-ph/0602229

    Article  ADS  Google Scholar 

  15. P. Colangelo, F. De Fazio, F. Jugeau, S. Nicotri, On the light glueball spectrum in a holographic description of QCD. Phys. Lett. B 652, 73 (2007). arXiv:hep-ph/0703316

    Article  ADS  Google Scholar 

  16. P. Colangelo, F. De Fazio, F. Jugeau, S. Nicotri, Investigating AdS/QCD duality through scalar glueball correlators. Int. J. Mod. Phys. A 24, 4177–4192 (2009). arXiv:0711.4747 [hep-ph]

    Article  ADS  Google Scholar 

  17. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD. Phys. Rev. D 78, 055009 (2008). arXiv:0807.1054 [hep-ph]

    Article  ADS  Google Scholar 

  18. H. Forkel, Holographic glueball structure. Phys. Rev. D 78, 025001 (2008). arXiv:0711.1179 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  19. U. Gursoy, E. Kiritsis, Exploring improved holographic theories for QCD: Part I. J. High Energy Phys. 0802, 032 (2008). arXiv:0707.1324 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  20. U. Gursoy, E. Kiritsis, F. Nitti, Exploring improved holographic theories for QCD: Part II. J. High Energy Phys. 0802, 019 (2008). arXiv:0707.1349 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  21. U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, F. Nitti, Improved holographic QCD. Lect. Notes Phys. 828, 79 (2011). arXiv:1006.5461 [hep-th]

    Article  ADS  Google Scholar 

  22. A. Vega, I. Schmidt, Modes with variable mass as an alternative in AdS/QCD models with chiral symmetry breaking. Phys. Rev. D 82, 115023 (2012). arXiv:1005.3000 [hep-ph]

    Article  ADS  Google Scholar 

  23. H.B. Meyer, Glueball regge trajectories. arXiv:hep-lat/0508002

  24. C.J. Morningstar, M.J. Peardon, The glueball spectrum from an anisotropic lattice study. Phys. Rev. D 60, 034509 (1999). arXiv:hep-lat/9901004

    Article  ADS  Google Scholar 

  25. Y. Chen, A. Alexandru, S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F. Liu, N. Mathur et al., Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D 73, 014516 (2006). arXiv:hep-lat/0510074

    Article  ADS  Google Scholar 

  26. B. Lucini, M. Teper, SU(N) gauge theories in four-dimensions: exploring the approach to N=∞. J. High Energy Phys. 0106, 050 (2001). arXiv:hep-lat/0103027

    Article  ADS  Google Scholar 

  27. V. Mathieu, N. Kochelev, V. Vento, The physics of glueballs. Int. J. Mod. Phys. E 18, 1 (2009). arXiv:0810.4453 [hep-ph]

    Article  ADS  Google Scholar 

  28. E. Klempt, A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts. Phys. Rep. 454, 1 (2007). arXiv:0708.4016 [hep-ph]

    Article  ADS  Google Scholar 

  29. B. Lucini, A. Rago, E. Rinaldi, Glueball masses in the large N limit. J. High Energy Phys. 1008, 119 (2010). arXiv:1007.3879 [hep-lat]

    Article  ADS  Google Scholar 

  30. G.S. Bali, et al. (TXL and T(X)L Collaborations), Static potentials and glueball masses from QCD simulations with Wilson sea quarks. Phys. Rev. D 62, 054503 (2000). arXiv:hep-lat/0003012

    Article  ADS  Google Scholar 

  31. C. McNeile et al. (UKQCD Collaboration), Mixing of scalar glueballs and flavor singlet scalar mesons. Phys. Rev. D 63, 114503 (2001). arXiv:hep-lat/0010019

    Article  ADS  Google Scholar 

  32. A. Hart et al. (UKQCD Collaboration), On the glueball spectrum in O(a) improved lattice QCD. Phys. Rev. D 65, 034502 (2002). arXiv:hep-lat/0108022

    Article  ADS  Google Scholar 

  33. A. Hart et al., A lattice study of the masses of singlet 0++ mesons. Phys. Rev. D 74, 114504 (2006). arXiv:hep-lat/0608026

    Article  ADS  Google Scholar 

  34. S. Narison, Spectral function sum rules for gluonic currents. Z. Phys. C 26, 209 (1984)

    ADS  Google Scholar 

  35. S. Narison, QCD tests of the puzzling scalar mesons. Phys. Rev. D 73, 114024 (2006)

    Article  ADS  Google Scholar 

  36. S. Narison, Masses, decays and mixings of gluonia in QCD. Nucl. Phys. B 509, 312 (1998)

    Article  ADS  Google Scholar 

  37. S.S. Gubser, A. Nellore, S.S. Pufu, F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics. Phys. Rev. Lett. 101, 131601 (2008). arXiv:0804.1950 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Narison, G. Veneziano, QCD tests of G(1.6)=Glueball. Int. J. Mod. Phys. A 4, 2751 (1989)

    Article  ADS  Google Scholar 

  39. C. Csaki, M. Reece, Toward a systematic holographic QCD: a braneless approach. J. High Energy Phys. 0705, 062 (2007). arXiv:hep-ph/0608266

    Article  ADS  Google Scholar 

  40. B. Batell, T. Gherghetta, Dynamical soft-wall AdS/QCD. Phys. Rev. D 78, 026002 (2008). arXiv:0801.4383 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  41. W. de Paula, T. Frederico, H. Forkel, M. Beyer, Dynamical holographic QCD with area-law confinement and linear regge trajectories. Phys. Rev. D 79, 075019 (2009). arXiv:0806.3830v2 [hep-ph]

    Article  ADS  Google Scholar 

  42. F. Jugeau, S. Narison, H. Ratsimbarison, SVZ + 1/q2 expansion versus some QCD holographic models. Phys. Lett. B 722, 111 (2013). arXiv:1302.6909 [hep-ph]

    Article  ADS  Google Scholar 

  43. L. Susskind, E. Witten, The holographic bound in anti-de Sitter space. arXiv:hep-th/9805114

  44. D.-F. Zeng, Heavy quark potentials in some renormalization group revised AdS/QCD models. Phys. Rev. D 78, 126006 (2008). arXiv:0805.2733 [hep-th]

    Article  ADS  Google Scholar 

  45. J. Alanen, K. Kajantie, Thermodynamics of a field theory with infrared fixed point from gauge/gravity duality. Phys. Rev. D 81, 046003 (2010). arXiv:0912.4128 [hep-ph]

    Article  ADS  Google Scholar 

  46. T.A. Ryttov, F. Sannino, Supersymmetry inspired QCD beta function. Phys. Rev. D 78, 065001 (2008). arXiv:0711.3745 [hep-th]

    Article  ADS  Google Scholar 

  47. S. Bethke, The 2009 World average of α s . Eur. Phys. J. C 64, 689 (2009). arXiv:0908.1135 [hep-ph]

    Article  ADS  Google Scholar 

  48. G.F. de Teramond, S.J. Brodsky et al., Light-front holography and Gauge/String duality: the light meson and baryon spectra. Nucl. Phys. Proc. Suppl. 199, 89 (2012). arXiv:0909.3900 [hep-ph]

    Article  Google Scholar 

  49. F. Zuo, Improved soft-wall model with a negative dilaton. Phys. Rev. D 82, 086011 (2010). arXiv:0909.4240 [hep-ph]

    Article  ADS  Google Scholar 

  50. A. Karch et al., On the sign of the dilaton in the soft-wall models. J. High Energy Phys. 1104, 066 (2011). arXiv:1012.4813 [hep-ph]

    Article  ADS  Google Scholar 

  51. S.J. Brodsky et al., Nonperturbative QCD coupling and its β-function from light-front holography. Phys. Rev. D 81, 096010 (2010). arXiv:1002.3948 [hep-ph]

    Article  ADS  Google Scholar 

  52. S. Nicotri, Phenomenology of the holographic soft-wall model of QCD with “Reversed” dilaton. AIP Conf. Proc. 1317, 322 (2011). arXiv:1009.4829 [hep-ph]

    ADS  Google Scholar 

  53. T. Gutsche et al., Dilaton in a soft wall holographic approach to mesons and baryons. Phys. Rev. D 85, 076003 (2012). arXiv:1108.0346 [hep-ph]

    Article  ADS  Google Scholar 

  54. S.S. Afonin, Soft wall model with inverse exponential profile as a model for the axial and pseudoscalar mesons. Int. J. Mod. A 27, 1250171 (2012). arXiv:1207.2644 [hep-ph]

    Article  ADS  Google Scholar 

  55. G.F. de Teramond, H.G. Dosh, S.J. Brosky, Kinematical and Dynamical Aspects of Higher-Spin Bound-State Equations in Holographic QCD. arXiv:1301.1651 [hep-ph]

Download references

Acknowledgements

The authors are partially supported by Capes and CNPq, Brazilian agencies. One of us, F.J., is grateful to J.A. Helayël-Neto for his hospitality at the CBPF during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Boschi-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boschi-Filho, H., Braga, N.R.F., Jugeau, F. et al. Anomalous dimensions and scalar glueball spectroscopy in AdS/QCD. Eur. Phys. J. C 73, 2540 (2013). https://doi.org/10.1140/epjc/s10052-013-2540-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2540-5

Keywords

Navigation