Skip to main content
Log in

Leptogenesis and dark matter detection in a TeV scale neutrino mass model with inverted mass hierarchy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Realization of the inverted hierarchy is studied in the radiative neutrino mass model with an additional doublet, in which neutrino masses and dark matter could be induced from a common particle. We show that the sufficient baryon number asymmetry is generated through resonant leptogenesis even for the case with rather mild degeneracy among TeV scale right-handed neutrinos. We also discuss the relation between this neutrino mass generation mechanism and low energy experiments for the DM direct search, the neutrinoless double β decay, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We call this new doublet the inert doublet hereafter, although it has Yukawa couplings with neutrinos.

  2. Supersymmetric extension has also been considered in [1316].

  3. The inert doublet DM has been studied in a lot of papers [2935].

  4. We note that the λ 5 contribution in this formula for \(M_{\eta}^{2}\) is neglected, since λ 5 is assumed to be sufficiently small.

  5. In this paper we do not assume any flavor symmetry to realize this structure. Thus, the quantum corrections could change it. However, since the assumed neutrino Yukawa couplings are very small, the zero texture of these neutrino Yukawa couplings are expected to be kept in good accuracy after taking account of the quantum effects through the renormalization group equations. Thus, if the values of nonzero neutrino Yukawa couplings at high energy scale are set suitably, the results obtained in this study could be reproduced. The detailed analysis is beyond the scope of the present study and it will be given elsewhere.

  6. It is possible to consider the situation such that three right-handed neutrinos are all degenerate. However, we do not consider this case here since the result can be estimated by using the results of the two cases.

  7. Other scenarios for tiny mass splittings of the right-handed neutrino can be found in [52, 53].

  8. Although the high degeneracy of the right-handed neutrino masses might be explained in this way, the required values for Yukawa couplings in \(\mathcal{L}_{Y}\) should be just assumed in this framework.

  9. In this analysis, we find the solutions by varying (q 1,q 2) only, for simplicity. If we vary other parameters to find solutions simultaneously, the tuning of (q 1,q 2) required here is expected to be much mild.

  10. The leptogenesis for the high mass right-handed neutrinos is possible also in this radiative mass model. In fact, such a possibility has been studied in [37] for the normal hierarchy and a similar result is expected for the inverted hierarchy. We are interested in the features of the TeV scale model here.

  11. The ΔL=2 scattering reaction densities \(\gamma_{N}^{(2)}\) and \(\gamma_{N}^{(13)}\) involve the interference terms for the right-handed neutrinos with tiny mass splittings. Although they are suggested to play a crucial role in [66], its effect might be suppressed due to very small neutrino Yukawa couplings (16) of the lightest right-handed neutrino N 3.

  12. In the analysis of the resonant leptogenesis in [37], the inverse decay has not been taken into account. As the result, the required mass degeneracy for the right-handed neutrinos is underestimated by one order of magnitude there. In that case, however, it is still milder than the usual case.

  13. We should also note that the CP phases appeared in Eqs. (28) and (23) have no direct relation.

  14. These formulas are the same as the ones given in the Appendix of [37] except that they are arranged so as to be applicable to the mass spectrum assumed in this paper. Typos and errors are corrected.

References

  1. Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  2. Q.R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  3. K. Eguchi et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  4. M.H. Ahn et al. (K2K Collaboration), Phys. Rev. Lett. 90, 041801 (2003)

    Article  ADS  Google Scholar 

  5. D.N. Spergel et al. (WMAP Collaboration), Astrophys. J. 148, 175 (2003)

    Article  Google Scholar 

  6. M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  7. E. Ma, Phys. Rev. D 73, 077301 (2006)

    Article  ADS  Google Scholar 

  8. J. Kubo, E. Ma, D. Suematsu, Phys. Lett. B 642, 18 (2006)

    Article  ADS  Google Scholar 

  9. J. Kubo, D. Suematsu, Phys. Lett. B 643, 336 (2006)

    Article  ADS  Google Scholar 

  10. D. Suematsu, T. Toma, T. Yoshida, Phys. Rev. D 79, 093004 (2009)

    Article  ADS  Google Scholar 

  11. D. Suematsu, T. Toma, T. Yoshida, Phys. Rev. D 82, 013012 (2010)

    Article  ADS  Google Scholar 

  12. D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu, O. Zapata, Phys. Rev. D 79, 013011 (2009)

    Article  ADS  Google Scholar 

  13. E. Ma, Ann. Fond. Louis Broglie 31, 285 (2006)

    Google Scholar 

  14. H. Fukuoka, J. Kubo, D. Suematsu, Phys. Lett. B 678, 401 (2009)

    Article  ADS  Google Scholar 

  15. D. Suematsu, T. Toma, Nucl. Phys. B 847, 567 (2011)

    Article  ADS  MATH  Google Scholar 

  16. H. Fukuoka, D. Suematsu, T. Toma, J. Cosmol. Astropart. Phys. 07, 001 (2011)

    Article  ADS  Google Scholar 

  17. M. Fukugita, T. Yanagida, Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  18. M. Plümacher, Nucl. Phys. B 530, 207 (1998)

    Article  ADS  Google Scholar 

  19. W. Buchmüller, M. Plümacher, Int. J. Mod. Phys. A 15, 5047 (2000)

    ADS  Google Scholar 

  20. W. Buchmüller, P. Di Bari, M. Plümacher, Phys. Lett. B 547, 128 (2002)

    Article  ADS  Google Scholar 

  21. W. Buchmüller, P. Di Bari, M. Plümacher, Nucl. Phys. B 643, 367 (2002)

    Article  ADS  Google Scholar 

  22. W. Buchmüller, P. Di Bari, M. Plümacher, Nucl. Phys. B 665, 445 (2003)

    Article  ADS  Google Scholar 

  23. G.F. Giudice, A. Notari, M. Raidal, A. Riotto, A. Struma, Nucl. Phys. B 685, 89 (2004)

    Article  ADS  Google Scholar 

  24. W. Buchmüller, R.D. Peccei, T. Yanagida, Annu. Rev. Nucl. Part. Sci. 55, 311 (2005)

    Article  ADS  Google Scholar 

  25. D. Suematsu, Eur. Phys. J. C 56, 379 (2008)

    Article  ADS  Google Scholar 

  26. H. Higashi, T. Ishima, D. Suematsu, Int. J. Mod. Phys. A 26, 995 (2001)

    Article  ADS  Google Scholar 

  27. D. Suematsu, Phys. Rev. D 85, 073008 (2012)

    Article  ADS  Google Scholar 

  28. D. Suematsu, Eur. Phys. J. C 72, 1951 (2008)

    Article  ADS  Google Scholar 

  29. R. Barbieri, L.J. Hall, V.S. Rychkov, Phys. Rev. D 74, 015007 (2006)

    Article  ADS  Google Scholar 

  30. M. Cirelli, N. Fornengo, A. Strumia, Nucl. Phys. B 753, 178 (2006)

    Article  ADS  Google Scholar 

  31. L.L. Honorez, E. Nezri, J.F. Oliver, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0702, 028 (2007)

    Article  Google Scholar 

  32. Q.-H. Cao, E. Ma, Phys. Rev. D 76, 095011 (2007)

    Article  ADS  Google Scholar 

  33. S. Andreas, M.H.G. Tytgat, Q. Swillens, J. Cosmol. Astropart. Phys. 0904, 004 (2009)

    Article  ADS  Google Scholar 

  34. E. Nezri, M.H.G. Tytday, G. Vertongen, J. Cosmol. Astropart. Phys. 0904, 014 (2009)

    Article  ADS  Google Scholar 

  35. L.L. Honorez, J. Cosmol. Astropart. Phys. 1101, 002 (2011)

    Article  ADS  Google Scholar 

  36. T. Hambye, F.-S. Ling, L.L. Honorez, J. Roche, J. High Energy Phys. 07, 090 (2009)

    Article  ADS  Google Scholar 

  37. S. Kashiwase, D. Suematsu, Phys. Rev. D 86, 053001 (2012)

    Article  ADS  Google Scholar 

  38. K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011)

    Article  ADS  Google Scholar 

  39. Y. Abe et al. (Double Chooz Collaboration), Phys. Rev. Lett. 108, 131801 (2012)

    Article  ADS  Google Scholar 

  40. J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012)

    Article  ADS  Google Scholar 

  41. F.E. An et al. (The Daya Bay Collaboration), Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  Google Scholar 

  42. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  43. D.V. Forero, M. Tórtola, J. Valle, arXiv:1205.4018

  44. Z. Ahmed et al. (CDMS Collaboration), Phys. Rev. Lett. 102, 011301 (2009)

    Article  ADS  Google Scholar 

  45. E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 105, 131302 (2010)

    Article  ADS  Google Scholar 

  46. G. Angloher et al., Astropart. Phys. 31, 270 (2009)

    Article  ADS  Google Scholar 

  47. V.N. Lebedenko et al., Phys. Rev. D 80, 052010 (2009)

    Article  ADS  Google Scholar 

  48. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996)

    Article  ADS  Google Scholar 

  49. D. Smith, N. Weiner, Phys. Rev. D 64, 043502 (2001)

    Article  ADS  Google Scholar 

  50. Y. Cui, D.E. Marrissey, D. Poland, L. Randall, J. High Energy Phys. 0905, 076 (2009)

    Article  ADS  Google Scholar 

  51. C. Arina, F.-S. Ling, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0910, 018 (2009)

    Article  ADS  Google Scholar 

  52. M.B. Gavela, T. Hambye, D. Hernandez, P. Hernandez, J. High Energy Phys. 0909, 038 (2009)

    Article  ADS  Google Scholar 

  53. D.A. Sierra, A. Degee, J.F. Kamenik, J. High Energy Phys. 1207, 135 (2012)

    Article  ADS  Google Scholar 

  54. E. Ma, M. Raidal, Phys. Rev. Lett. 87, 011802 (2001)

    Article  ADS  Google Scholar 

  55. J. Adam et al. (MEG Collaboration), Nucl. Phys. B 834, 1 (2010)

    Article  ADS  Google Scholar 

  56. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 104, 021802 (2010)

    Article  ADS  Google Scholar 

  57. K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Lett. B 649, 173 (2007)

    Article  ADS  Google Scholar 

  58. M. Flanz, E.A. Pascos, U. Sarkar, Phys. Lett. B 345, 248 (1995)

    Article  ADS  Google Scholar 

  59. L. Covi, E. Roulet, F. Vissani, Phys. Lett. B 384, 169 (1996)

    Article  ADS  Google Scholar 

  60. A. Pilaftsis, Phys. Rev. D 56, 5431 (1997)

    Article  ADS  Google Scholar 

  61. E. Akhmedov, M. Frigerio, A.Y. Smirnov, J. High Energy Phys. 0309, 021 (2003)

    Article  ADS  Google Scholar 

  62. C.H. Albright, S.M. Barr, Phys. Rev. D 69, 073010 (2004)

    Article  ADS  Google Scholar 

  63. T. Hambye, J. March-Russell, S.W. West, J. High Energy Phys. 0407, 070 (2004)

    Article  ADS  Google Scholar 

  64. A. Pilaftsis, E.J. Underwood, Nucl. Phys. B 692, 303 (2004)

    Article  ADS  Google Scholar 

  65. A. Pilaftsis, E.J. Underwood, Phys. Rev. D 72, 113001 (2005)

    Article  ADS  Google Scholar 

  66. S. Blanchet, T. Hambye, F.-X. Josse-Michaux, arXiv:0912.3153 [hep-ph]

  67. E. Aprile, arXiv:1206.6288 [astro-ph.IM]

  68. M. Luty, Phys. Rev. D 45, 455 (1992)

    Article  ADS  Google Scholar 

  69. M. Plumacher, Nucl. Phys. B 530, 207 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by a Grant-in-Aid for Scientific Research (C) from Japan Society for Promotion of Science (No. 24540263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daijiro Suematsu.

Appendix

Appendix

We summarize the formulas of the reaction density used in the Boltzmann equations [68, 69] for the number density of N 3 and the lepton number asymmetry.Footnote 14 In order to give the expression for the reaction density of the relevant processes, we introduce dimensionless variables

$$ x=\frac{s}{M_3^2}, \qquad a_j=\frac{M_j^2}{M_3^2}, \qquad a_\eta=\frac{M_\eta^2}{M_3^2}, $$
(A.1)

where s is the squared center of mass energy. The reaction density for the decay of N j can be expressed as

$$ \gamma_D^{N_j}=\frac{(hh^\dagger)_{jj}}{8\pi^3} M_3^4a_j \sqrt{a_j} \biggl(1-\frac{a_\eta}{a_j} \biggr)^2 \frac{K_1(\sqrt{a_j}z)}{z}, $$
(A.2)

where K 1(z) is the modified Bessel function of the second kind.

The reaction density for the scattering process is expressed as

$$ \gamma(ab\rightarrow ij)=\frac{T}{64\pi^4}\int^\infty_{s_{\mathrm{min}}}ds\, \hat{\sigma}(s)\sqrt{s}K_1 \biggl(\frac{\sqrt{s}}{T} \biggr), $$
(A.3)

where s min=max[(m a +m b )2,(m i +m j )2] and \(\hat{\sigma}(s)\) is the reduced cross section. In order to give the concrete expression for the reaction density relevant to Eq. (24), we define the following quantities for convenience:

$$ \begin{aligned} \phantom{}& \frac{1}{D_i(x)}=\frac{x-a_i}{(x-a_i)^2+a_i^2c_i}, \\ &c_i= \frac{1}{64\pi^2} \biggl(\sum_{\alpha=e,\mu,\tau} |h_{\alpha i}|^2 \biggr)^2 \biggl(1- \frac{a_\eta}{a_i} \biggr)^4, \\ &\lambda_{ij}= \bigl[x-(\sqrt{a_i}+ \sqrt{a_j})^2 \bigr] \bigl[x-(\sqrt{a_i}- \sqrt{a_j})^2 \bigr], \\ &L_{ij}=\ln \biggl[\frac{x-a_i-a_j+ 2a_\eta +\sqrt{\lambda_{ij}}}{ x-a_i-a_j +2 a_\eta -\sqrt{\lambda_{ij}}} \biggr], \\ &L_{ij}^\prime=\ln \biggl[\frac{\sqrt{x}(x-a_i-a_j-2a_\eta) +\sqrt{\lambda_{ij}(x-4a_\eta)}}{ \sqrt{x}(x-a_i-a_j-2a_\eta) -\sqrt{\lambda_{ij}(x-4a_\eta)}} \biggr]. \end{aligned} $$
(A.4)

As the lepton number violating scattering processes induced through the N i exchange, we have

$$\begin{aligned} \hat{\sigma}^{(2)}_N(x) =&\frac{1}{2\pi} \frac{(x-a_\eta)^2}{x^2} \Biggl[\sum_{i=1}^3 \bigl(hh^\dagger\bigr)_{ii}^2\frac{a_i}{x} \biggl\{\frac{x^2}{xa_i -a_\eta^2}+\frac{x}{D_i(x)} \\ &{}+\frac{(x-a_\eta)^2}{2D_i(x)^2} -\frac{x^2}{(x-a_\eta)^2} \biggl(1+\frac{x+a_i-2a_\eta}{D_i(x)} \biggr) \\ &{}\times \ln \biggl( \frac{x(x+a_i-2a_\eta)}{xa_i-a_\eta^2} \biggr) \biggr\} + \sum_{i>j}\mathrm{Re}\bigl[ \bigl(hh^\dagger\bigr)_{ij}^2\bigr] \\ &{}\times \frac{\sqrt{a_ia_j}}{x} \biggl\{ \frac{x}{D_i(x)}+\frac{x}{D_j(x)}+ \frac{(x-a_\eta)^2}{D_i(x)D_j(x)} \\ &{}+\frac{x^2}{(x-a_\eta)^2} \biggl(\frac{2(x+a_i-2a_\eta)}{a_j-a_i}- \frac{x+a_i-2a_\eta}{D_j(x)} \biggr) \\ &{}\times \ln\frac{x(x+a_i-2a_\eta)}{xa_i-a_\eta^2} \\ &{}+\frac{x^2}{(x-a_\eta)^2} \biggl(\frac{2(x+a_j-2a_\eta)}{a_i-a_j}- \frac{x+a_j-2a_\eta}{D_i(x)} \biggr) \\ &{}\times \ln\frac{x(x+a_j-2a_\eta)}{xa_j-a_\eta^2} \biggr\} \Biggr] \end{aligned}$$
(A.5)

for \(\ell_{\alpha}\eta^{\dagger}\rightarrow \bar{\ell}_{\beta}\eta\) and also

$$\begin{aligned} \hat{\sigma}^{(13)}_N(x) =&\frac{1}{2\pi} \Biggl[\sum _{i=1}^3\bigl(hh^\dagger \bigr)^2_{ii} \biggl\{ \frac{a_i(x^2-4xa_\eta)^{1/2}}{a_ix+(a_i-a_\eta)^2} \\ &{}+ \frac{a_i}{x+2a_i-2a_\eta} \\ &{}\times \ln \biggl(\frac{x+(x^2-4xa_\eta)^{1/2}+2a_i-2a_\eta}{ x-(x^2-4xa_\eta)^{1/2}+2a_i-2a_\eta} \biggr) \biggr\} \\ &{}+ \sum_{i>j}\mathrm{Re}\bigl[\bigl(hh^\dagger \bigr)_{ij}^2\bigr] \frac{\sqrt{a_ia_j}}{x+a_i+a_j-2a_\eta} \\ &{}\times \biggl\{\frac{2x+3a_i+a_j-4a_\eta}{a_j-a_i} \\ &{}\times \ln \biggl(\frac{x+(x^2-4xa_\eta)^{1/2}+2a_i-2a_\eta}{ x-(x^2-4xa_\eta)^{1/2}+2a_i-2a_\eta} \biggr) \\ &{}+ \frac{2x+a_i+3a_j-4a_\eta}{a_i-a_j} \\ &{}\times \ln \biggl(\frac{x+(x^2-4xa_\eta)^{1/2}+2a_j-2a_\eta}{ x-(x^2-4xa_\eta)^{1/2}+2a_j-2a_\eta} \biggr) \biggr\} \Biggr] \end{aligned}$$
(A.6)

for α β ηη. The cross terms has no contribution if the CP phases are assumed to satisfy |sin2(φ 1,2φ 3)|=1. We adopt this possibility in the numerical analysis, for simplicity. Since another type of the lepton number violating process N i N j α β induced by the η exchange could be suppressed for a small |λ 5|, we can neglect them safely for the value of |λ 5| used in this analysis.

As the lepton number conserving scattering processes which contribute to determine the number density of N 3, we have

$$\begin{aligned} \hat{\sigma}^{(2)}_{N_iN_j}(x) =&\frac{1}{4\pi} \biggl[ \bigl(hh^\dagger\bigr)_{ii}\bigl(hh^\dagger \bigr)_{jj} \\ &{}\times \biggl\{\frac{\sqrt{\lambda_{ij}}}{x} \biggl(1+ \frac{(a_i-a_\eta)(a_j-a_\eta)}{(a_i-a_\eta)(a_j-a_\eta)+xa_\eta} \biggr) \\ &{}+\frac{a_i+a_j-2a_\eta}{x}L_{ij} \biggr\} \\ &{}- \mathrm{Re}\bigl[ \bigl(h h^\dagger\bigr)_{ij}^2\bigr] \frac{2\sqrt{a_ia_j}L_{ij}}{x-a_i-a_j+2a_\eta} \biggr] \end{aligned}$$
(A.7)

for \(N_{i}N_{j} \rightarrow \ell_{\alpha}\bar{\ell}_{\beta}\) which are induced through the η exchange and also

$$\begin{aligned} \hat{\sigma}^{(3)}_{N_iN_j}(x) =& \frac{1}{4\pi} \frac{(x-4a_\eta)^{1/2}}{x^{1/2}} \biggl[\bigl|\bigl(hh^\dagger\bigr)_{ij}\bigr|^2 \biggl\{ \frac{\sqrt{\lambda_{ij}}}{x} \biggl(-2 \\ &{}+\frac{a_\eta(a_i- a_j)^2}{ (a_\eta-a_i)(a_\eta-a_j)x +(a_i-a_j)^2a_\eta} \biggr) \\ &{}+\frac{x^{1/2}}{(x-4a_\eta)^{1/2}} \biggl(1-2 \frac{a_\eta}{x} \biggr) L_{ij}^\prime \biggr\} \\ &{}- 2\mathrm{Re}\bigl[\bigl(h h^\dagger\bigr)_{ij}^2 \bigr] \frac{\sqrt{a_ia_j}(a_i+a_j-2a_\eta)L_{ij}^\prime}{ x(x-a_i-a_j-2a_\eta)} \biggr] \end{aligned}$$
(A.8)

for N i N j ηη which are induced through the α exchange. The cross terms in these reduced cross sections can be neglected if the same assumption is made for the CP phases as Eqs. (A.5) and (A.6).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwase, S., Suematsu, D. Leptogenesis and dark matter detection in a TeV scale neutrino mass model with inverted mass hierarchy. Eur. Phys. J. C 73, 2484 (2013). https://doi.org/10.1140/epjc/s10052-013-2484-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2484-9

Keywords

Navigation