Skip to main content
Log in

Cosmological model with local symmetry of very special relativity and constraints on it from supernovae

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Based on Cohen & Glashow’s very special relativity (Cohen and Glashow in Phys. Rev. Lett. 97:021601, 2006), we propose an anisotropic modification to the Friedmann–Robertson–Walker (FRW) line element. An arbitrarily oriented 1-form is introduced and the FRW spacetime becomes of the Randers–Finsler type. The 1-form picks out a privileged axis in the universe. Thus, the cosmological redshift as well as the Hubble diagram of the type Ia supernovae (SNe Ia) becomes anisotropic. By directly analyzing the Union2 compilation, we obtain the privileged axis pointing to (l,b)=(304±43,−27±13) (68 % C.L.). This privileged axis is close to those obtained by comparing the best-fit Hubble diagrams in pairs of hemispheres. It should be noticed that the result is consistent with isotropy at the 1σ level since the anisotropic magnitude is D=0.03±0.03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Weinberg, Cosmology (Oxford University Press, New York, 2008)

    MATH  Google Scholar 

  2. E. Komatsu, et al. (WMAP collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  3. B.A. Reid et al., Mon. Not. R. Astron. Soc. 404, 60 (2010)

    Article  ADS  Google Scholar 

  4. L. Perivolaropoulos. arXiv:1104.0539

  5. R. Watkins, H.A. Feldman, M.J. Hudson, Mon. Not. R. Astron. Soc. 392, 743 (2009)

    Article  ADS  Google Scholar 

  6. C.L. Bennett et al., Astrophys. J. Suppl. Ser. 192, 17 (2011)

    Article  ADS  Google Scholar 

  7. K. Land, J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005)

    Article  ADS  Google Scholar 

  8. M. Tegmark, A. de Oliveira-Costa, A. Hamilton, Phys. Rev. D 68, 123523 (2003)

    Article  ADS  Google Scholar 

  9. D. Hutsemekers, R. Cabanac, H. Lamy, D. Sluse, Astron. Astrophys. 441, 915 (2005)

    Article  ADS  Google Scholar 

  10. I. Antoniou, L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 1012, 012 (2010)

    Article  ADS  Google Scholar 

  11. T.S. Kolatt, O. Lahav, Mon. Not. R. Astron. Soc. 323, 859 (2001)

    Article  ADS  Google Scholar 

  12. C. Bonvin, R. Durrer, M. Kunz, Phys. Rev. Lett. 96, 191302 (2006)

    Article  ADS  Google Scholar 

  13. C. Gordon, K. Land, A. Slosar, Phys. Rev. Lett. 99, 081301 (2007)

    Article  ADS  Google Scholar 

  14. D.J. Schwarz, B. Weinhorst, Astron. Astrophys. 474, 717 (2007)

    Article  ADS  Google Scholar 

  15. S. Gupta, T.D. Saini, T. Laskar, Mon. Not. R. Astron. Soc. 388, 242 (2008)

    Article  ADS  Google Scholar 

  16. T.S. Koivisto, D.F. Mota, J. Cosmol. Astropart. Phys. 0806, 018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Blomqvist, J. Enander, E. Mortsell, J. Cosmol. Astropart. Phys. 10, 018 (2010)

    Article  ADS  Google Scholar 

  18. A. Cooray, D.E. Holz, R. Caldwell, J. Cosmol. Astropart. Phys. 11, 015 (2010)

    Article  ADS  Google Scholar 

  19. S. Gupta, T.D. Saini, Mon. Not. R. Astron. Soc. 407, 651 (2010)

    Article  ADS  Google Scholar 

  20. T.S. Koivisto, D.F. Mota, M. Quartin, T.G. Zlosnik, Phys. Rev. D 83, 023509 (2011)

    Article  ADS  Google Scholar 

  21. J. Colin, R. Mohayaee, S. Sarkar, A. Shafieloo, Mon. Not. R. Astron. Soc. 414, 264 (2011)

    Article  ADS  Google Scholar 

  22. L. Campanelli, P. Cea, G.L. Fogli, A. Marrone, Phys. Rev. D 83, 103503 (2011)

    Article  ADS  Google Scholar 

  23. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  24. S. Perlmutter et al., Astron. J. 517, 565 (1999)

    Article  Google Scholar 

  25. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  26. R.-G. Cai, Z.-L. Tuo, J. Cosmol. Astropart. Phys. 1202, 004 (2012)

    Article  ADS  Google Scholar 

  27. B. Kalus, D.J. Schwarz, M. Seikel, A. Wiegand, arXiv:1212.3691

  28. A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. G.W. Gibbons, J. Gomis, C.N. Pope, Phys. Rev. D 76, 081701 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. X. Li, Z. Chang, Differ. Geom. Appl. 30, 737 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Zhang, X. Xue, arXiv:1205.1134

  32. L. Zhang, X. Xue, arXiv:1204.6425

  33. G. Randers, Phys. Rev. 59, 195 (1941)

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200 (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  35. T. Kahniashvili, G. Lavrelashvili, B. Ratra, Phys. Rev. D 78, 063012 (2008)

    Article  ADS  Google Scholar 

  36. J.D. Barrow, P.G. Ferreira, J. Silk, Phys. Rev. Lett. 78, 3610 (1997)

    Article  ADS  Google Scholar 

  37. L. Campanelli, Phys. Rev. D 80, 063006 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Kim, P. Naselsky, J. Cosmol. Astropart. Phys. 07, 041 (2009)

    Article  ADS  Google Scholar 

  39. P.C. Stavrinos, A.P. Kouretsis, M. Stathakopoulos, Gen. Relativ. Gravit. 40, 1403 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959)

    Book  MATH  Google Scholar 

  41. G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories (Reidel, Dordrecht, 1995)

    Google Scholar 

  42. Z. Chang, S. Wang, arXiv:1303.6058

  43. Z. Chang, S. Wang, X. Li, Eur. Phys. J. C 72, 1838 (2012)

    Article  ADS  Google Scholar 

  44. S. Dodelson, Modern Cosmology (Elsevier, Singapore, 2008)

    Google Scholar 

  45. F. Finelli, A. Gruppuso, F. Paci, A.A. Starobinsky, J. Cosmol. Astropart. Phys. 07, 049 (2012)

    Article  ADS  Google Scholar 

  46. S.S. Chern, Not. AMS 959 (1996)

  47. G.Yu. Bogoslovsky, Il Nuovo Cimento B 40, 99 (1977)

    Article  ADS  Google Scholar 

  48. G.Yu. Bogoslovsky, Il Nuovo Cimento B 40, 116 (1977)

    Article  ADS  Google Scholar 

  49. G.Yu. Bogoslovsky, Il Nuovo Cimento B 43, 377 (1978)

    Article  ADS  Google Scholar 

  50. Z. Chang, S. Wang, Eur. Phys. J. C 72, 2165 (2012)

    Article  ADS  Google Scholar 

  51. Z. Chang, S. Wang, Eur. Phys. J. C 73, 2337 (2013)

    Article  ADS  Google Scholar 

  52. V. Balan, G.Yu. Bogoslovsky, S.S. Kokarev, D.G. Pavlov, S.V. Siparov, N. Voicu, J. Mod. Phys. 3, 1314 (2012)

    Article  Google Scholar 

  53. H.C. Wang, J. Lond. Math. Soc. s1-22(1), 5 (1947)

    Article  Google Scholar 

  54. S.F. Rutz, Contemp. Math. 196, 289 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful for useful discussions with Jian-Ping Dai, Yunguo Jiang, Danning Li, and Hai-Nan Lin. We are very grateful to Prof. Shuang-Nan Zhang who provides us the galactic coordinates of SNe Ia in the Union2 compilation. This work is supported by the National Natural Science Fund of China under Grant No. 11075166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Z., Li, MH., Li, X. et al. Cosmological model with local symmetry of very special relativity and constraints on it from supernovae. Eur. Phys. J. C 73, 2459 (2013). https://doi.org/10.1140/epjc/s10052-013-2459-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2459-x

Keywords

Navigation