Skip to main content
Log in

Δr in the Two-Higgs-Doublet Model at full one loop level—and beyond

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

After the recent discovery of a Higgs-like boson particle at the CERN LHC-collider, it becomes more necessary than ever to prepare ourselves for identifying its standard or non-standard nature. The fundamental parameter Δr, relating the values of the electroweak gauge boson masses and the Fermi constant, is the traditional observable encoding high precision information of the quantum effects. In this work we present a complete quantitative study of Δr in the framework of the general Two-Higgs-Doublet Model (2HDM). While the one-loop analysis of Δr in this model was carried out long ago, in the first part of our work we consistently incorporate the higher order effects that have been computed since then for the SM part of Δr. Within the on-shell scheme, we find typical corrections leading to shifts of ∼20–40 MeV on the W mass, resulting in a better agreement with its experimentally measured value and in a degree no less significant than in the MSSM case. In the second part of our study we devise a set of effective couplings that capture the dominant higher order genuine 2HDM quantum effects on the δρ part of Δr in the limit of large Higgs boson self-interactions. This limit constitutes a telltale property of the general 2HDM which is unmatched by e.g. the MSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Cf. for instance [6873] for a comprehensive exposition of the method.

  2. Let us point out that to the best of our knowledge the oldest full one-loop MSSM calculation of the electroweak gauge boson masses existing in the literature was provided quite earlier in references [89] and [90]. Although it was presented in a renormalization framework slightly different from the usual one, it was later adapted to the standard on-shell scheme and this resulted in the first full one-loop MSSM calculation of Δr reported in the literature [85], followed shortly after by a similar analysis of [86].

  3. Let us note in passing that such a symmetry is automatically preserved in the MSSM.

  4. In contrast, the core of the enhancement capabilities of the MSSM Lagrangian resides in the richer pattern of Yukawa-like couplings between the Higgs bosons and the quarks, as well as between quarks, squarks and charginos/neutralinos. Their implications for collider and EW precision physics have been object of dedicated attention in the past for a plethora of varied processes, see e.g. [114, 115]. For reviews on the subject, see e.g. [9, 116118].

  5. Beyond the one-loop order, resummations of the leading one-loop contributions have been derived, see e.g. [145], and further contrasted to exact higher-order calculations [95100, 146].

  6. Recall that Δr in the defining equation (3) collects the expanded form of the various contributions up to the order of perturbation theory where the calculation has been carried out. In contrast to the form sketched in (23), no resummation is assumed here of the Δα and δρ effects since the terms obtained e.g. at two loop order from the resummation of leading one-loop effects are already contained in the explicit two-loop contribution.

  7. Approaches along these lines are certainly not foreign in the literature, see for example Ref. [45]. In our opinion, however, scarce attention has been devoted to the underlying assumptions and corresponding limitations.

  8. The potential importance of these distinctive quantum effects on Δr, as a trademark structure of (non-supersymmetric) extended Higgs sectors, was first suggested to the best of our knowledge in Ref. [113].

References

  1. J. Incandela, CERN Seminar. Update on the Standard Model Higgs searches in CMS, July 4 2012. CMS-PAS-HIG-12-020

  2. F. Gianotti, CERN Seminar. Update on the Standard Model Higgs searches in ATLAS, July 4 2012. ATLAS-CONF-2012-093

  3. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B (2012). arXiv:1207.7235 [hep-ex]

  4. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B (2012). arXiv:1207.7214 [hep-ex]

  5. P.W. Higgs, Phys. Lett. 12, 132–133 (1964)

    ADS  Google Scholar 

  6. P.W. Higgs, Phys. Rev. Lett. 13, 508–509 (1964)

    MathSciNet  ADS  Google Scholar 

  7. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321–322 (1964)

    MathSciNet  ADS  Google Scholar 

  8. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585–587 (1964)

    ADS  Google Scholar 

  9. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs Hunter’s Guide (Addison-Wesley, Menlo-Park, 1990)

    Google Scholar 

  10. A. Djouadi, Phys. Rep. 457, 1–216 (2008). arXiv:hep-ph/0503172 [hep-ph]

    ADS  Google Scholar 

  11. P.H. Chankowski et al., Nucl. Phys. B, Proc. Suppl. 37, 232–239 (1994)

    ADS  Google Scholar 

  12. R. Barbieri, L. Maiani, Nucl. Phys. B 224, 32 (1983)

    ADS  Google Scholar 

  13. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Phys. Rep. 516, 1 (2012). arXiv:1106.0034 [hep-ph]

    ADS  Google Scholar 

  14. S. Ferrara (ed.), Supersymmetry, vols. 1–2 (North Holland/World Scientific, Singapore, 1987)

    Google Scholar 

  15. D.B. Kaplan, H. Georgi, S. Dimopoulos, Phys. Lett. B 136, 187 (1984)

    ADS  Google Scholar 

  16. K. Agashe, R. Contino, A. Pomarol, Nucl. Phys. B 719, 165–187 (2005). arXiv:hep-ph/0412089

    ADS  Google Scholar 

  17. J. Mrazek et al., Nucl. Phys. B 853, 1–48 (2011). arXiv:1105.5403 [hep-ph]

    ADS  MATH  Google Scholar 

  18. G. Burdman, C.E.F. Haluch, J. High Energy Phys. 12, 038 (2011). arXiv:1109.3914 [hep-ph]

    ADS  Google Scholar 

  19. M. Geller, S. Bar-Shalom, A. Soni, arXiv:1302.2915 [hep-ph]

  20. M. Schmaltz, D. Tucker-Smith, Annu. Rev. Nucl. Part. Sci. 55, 229–270 (2005). arXiv:hep-ph/0502182

    ADS  Google Scholar 

  21. M. Perelstein, Prog. Part. Nucl. Phys. 58, 247–291 (2007). arXiv:hep-ph/0512128

    ADS  Google Scholar 

  22. J.F. Gunion, H.E. Haber, Phys. Rev. D 72, 095002 (2005). arXiv:hep-ph/0506227

    ADS  Google Scholar 

  23. P.M. Ferreira, H.E. Haber, M. Maniatis, O. Nachtmann, J.P. Silva, Int. J. Mod. Phys. A 26, 769–808 (2011). arXiv:1010.0935 [hep-ph]

    ADS  MATH  Google Scholar 

  24. E. Ma, Phys. Rev. D 73, 077301 (2006). arXiv:hep-ph/0601225

    ADS  Google Scholar 

  25. S. Kanemura, Y. Okada, E. Senaha, Phys. Lett. B 606, 361–366 (2005). arXiv:hep-ph/0411354

    ADS  Google Scholar 

  26. J.M. Cline, K. Kainulainen, M. Trott, J. High Energy Phys. 1111, 089 (2011). arXiv:1107.3559 [hep-ph]

    ADS  Google Scholar 

  27. A. Tranberg, B. Wu, J. High Energy Phys. 1207, 087 (2012). arXiv:1203.5012 [hep-ph]

    ADS  Google Scholar 

  28. B. Stech, Phys. Rev. D 86, 055003 (2012). arXiv:1206.4233 [hep-ph]

    ADS  Google Scholar 

  29. N.G. Deshpande, E. Ma, Phys. Rev. D 18, 2574 (1978)

    ADS  Google Scholar 

  30. R. Barbieri, L.J. Hall, V.S. Rychkov, Phys. Rev. D 74, 015007 (2006). arXiv:hep-ph/0603188

    ADS  Google Scholar 

  31. E. Lündstrom, M. Gustafsson, J. Edsjö, Phys. Rev. D 79, 035013 (2009). arXiv:0810.3924 [hep-ph]

    ADS  Google Scholar 

  32. A. Arhrib, R. Benbrik, N. Gaur, Phys. Rev. D 85, 095021 (2012). arXiv:1201.2644 [hep-ph]

    ADS  Google Scholar 

  33. L. López-Honorez, E. Nezri, J.F. Oliver, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0702, 028 (2007). arXiv:hep-ph/0612275

    Google Scholar 

  34. T. Hambye, M.H.G. Tytgat, Phys. Lett. B 659, 651–655 (2008). arXiv:0707.0633 [hep-ph]

    ADS  Google Scholar 

  35. L. López-Honorez, C.E. Yaguna, J. Cosmol. Astropart. Phys. 1101, 002 (2011). arXiv:1011.1411 [hep-ph]

    Google Scholar 

  36. M. Gustafsson, in PoS CHARGED2010 (2010), p. 030

    Google Scholar 

  37. B. Gorczyca, M. Krawczyk, Acta Phys. Pol. B 42, 2229–2236 (2011). arXiv:1112.4356 [hep-ph]

    Google Scholar 

  38. M. Krawczyk, D. Sokolowska, Fortschr. Phys. 59, 1098–1102 (2011). arXiv:1105.5529 [hep-ph]

    MATH  Google Scholar 

  39. R. Schabinger, J.D. Wells, Phys. Rev. D 72, 093007 (2005). arXiv:hep-ph/0509209

    ADS  Google Scholar 

  40. B. Patt, F. Wilczek, arXiv:hep-ph/0605188

  41. C. Englert, T. Plehn, M. Rauch, D. Zerwas, P.M. Zerwas, Phys. Lett. B 707, 512–516 (2012). arXiv:1112.3007 [hep-ph]

    ADS  Google Scholar 

  42. C. Englert, T. Plehn, D. Zerwas, P.M. Zerwas, Phys. Lett. B 703, 298–305 (2011). arXiv:1106.3097 [hep-ph]

    ADS  Google Scholar 

  43. B. Batell, S. Gori, L.-T. Wang, J. High Energy Phys. 1206, 172 (2012). arXiv:1112.5180 [hep-ph]

    ADS  Google Scholar 

  44. E. Cerveró, J.-M. Gérard, Phys. Lett. B 712, 255–260 (2012). arXiv:1202.1973 [hep-ph]

    ADS  Google Scholar 

  45. J.S. Lee, A. Pilaftsis, Phys. Rev. D 86, 035004 (2012). arXiv:1201.4891 [hep-ph]

    ADS  Google Scholar 

  46. G. Panotopoulos, P. Tuzón, J. High Energy Phys. 07, 039 (2011). arXiv:1102.5726 [hep-ph]

    ADS  Google Scholar 

  47. S. Bar-Shalom, S. Nandi, A. Soni, Phys. Rev. D 84, 053009 (2011). arXiv:1105.6095 [hep-ph]

    ADS  Google Scholar 

  48. A. Arhrib et al., Phys. Rev. D 84, 095005 (2011). arXiv:1105.1925 [hep-ph]

    ADS  Google Scholar 

  49. M. Aoki et al., Phys. Rev. D 84, 055028 (2011). arXiv:1104.3178 [hep-ph]

    ADS  Google Scholar 

  50. S. Chang, J.A. Evans, M.A. Luty, Phys. Rev. D 84, 095030 (2011). arXiv:1107.2398 [hep-ph]

    ADS  Google Scholar 

  51. A. Arhrib, C.-W. Chiang, D.K. Ghosh, R. Santos, arXiv:1112.5527 [hep-ph] (2011)

  52. S. Kanemura, K. Tsumura, H. Yokoya, Phys. Rev. D 85, 095001 (2012). arXiv:1111.6089 [hep-ph]

    ADS  Google Scholar 

  53. K. Blum, R.T. D’Agnolo, Phys. Lett. B 714, 66–69 (2012). arXiv:1202.2364 [hep-ph]

    ADS  Google Scholar 

  54. W. Mader, J.-h. Park, G.M. Pruna, D. Stöckinger, A. Straessner, J. High Energy Phys. 1209, 125 (2012). arXiv:1205.2692 [hep-ph]

    ADS  Google Scholar 

  55. N. Craig, J.A. Evans, R. Gray, C. Kilic, M. Park, S. Somalwar, S. Thomas, arXiv:1210.0559 [hep-ph]

  56. P.M. Ferreira, R. Santos, M. Sher, J.P. Silva, Phys. Rev. D 85, 077703 (2012). arXiv:1112.3277 [hep-ph]

    ADS  Google Scholar 

  57. P.M. Ferreira, R. Santos, M. Sher, J.P. Silva, Phys. Rev. D 85, 035020 (2012). arXiv:1201.0019 [hep-ph]

    ADS  Google Scholar 

  58. G. Burdman, C.E.F. Haluch, R.D. Matheus, Phys. Rev. D 85, 095016 (2012). arXiv:1112.3961 [hep-ph]

    ADS  Google Scholar 

  59. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. High Energy Phys. 1207, 136 (2012). arXiv:1202.3144 [hep-ph]

    ADS  Google Scholar 

  60. H.S. Cheon, S.K. Kang, arXiv:1207.1083 [hep-ph]

  61. N. Craig, S. Thomas, arXiv:1207.4835 [hep-ph]

  62. D.S.M. Alves, P.J. Fox, N.J. Weiner, arXiv:1207.5499 [hep-ph]

  63. Y. Bai, V. Barger, L.L. Everett, G. Shaughnessy, arXiv:1210.4922 [hep-ph]

  64. S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park, J. Song, arXiv:1210.3439 [hep-ph]

  65. C.-Y. Chen, S. Dawson, arXiv:1301.0309 [hep-ph]

  66. W. Altmannshofer, S. Gori, G.D. Kribs, arXiv:1210.2465 [hep-ph]

  67. A. Celis, V. Ilisie, A. Pich, arXiv:1302.4022 [hep-ph]

  68. W. Hollik, Fortschr. Phys. 38, 165 (1990)

    Google Scholar 

  69. W. Hollik, J. Phys. G 29, 131–140 (2003)

    ADS  Google Scholar 

  70. W. Hollik, J. Phys. Conf. Ser. 53, 7–43 (2006)

    ADS  Google Scholar 

  71. W. Hollik, Renormalization of the standard model, in Precision Tests of the Standard Electroweak Model, ed. by P. Langacker. Advanced Series on Directions in High Energy Physics, vol. 14 (World Scientific, Singapore, 1995)

    Google Scholar 

  72. J.D. Wells, arXiv:hep-ph/0512342

  73. A. Sirlin, A. Ferroglia, arXiv:1210.5296 [hep-ph]

  74. The LEP Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, the SLD Electroweak and Heavy Flavour Working Groups, Precision electroweak measurements and constraints on the Standard Model, CERN-PH-EP/2009-023. http://www.cern.ch/LEPEWWG

  75. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012)

    ADS  Google Scholar 

  76. G. Bozzi, J. Rojo, A. Vicini, Phys. Rev. D 83, 113008 (2011). arXiv:1104.2056 [hep-ph]

    ADS  Google Scholar 

  77. C. Bernaciak, D. Wackeroth, Phys. Rev. D 85, 093003 (2012). arXiv:1201.4804 [hep-ph]

    ADS  Google Scholar 

  78. A. Sirlin, Phys. Rev. D 22, 971–981 (1980)

    ADS  Google Scholar 

  79. W.J. Marciano, A. Sirlin, Phys. Rev. D 22, 2695 (1980)

    ADS  Google Scholar 

  80. D.A. Ross, M.J.G. Veltman, Nucl. Phys. B 95, 135 (1975)

    ADS  Google Scholar 

  81. M.J.G. Veltman, Acta Phys. Pol. B 8, 475 (1977)

    Google Scholar 

  82. M.J.G. Veltman, Nucl. Phys. B 123, 89 (1977)

    ADS  Google Scholar 

  83. M.B. Einhorn, D.R.T. Jones, M.J.G. Veltman, Nucl. Phys. B 191, 146 (1981)

    ADS  Google Scholar 

  84. R. Barbieri, M. Frigeni, F. Giuliani, H. Haber, Nucl. Phys. B 341, 309–321 (1990)

    ADS  Google Scholar 

  85. D. Garcia, J. Solà, Mod. Phys. Lett. A 9, 211–224 (1994). Preprint UAB-FT-313 (April 1993)

    ADS  Google Scholar 

  86. P.H. Chankowski et al., Nucl. Phys. B 417, 101–129 (1994). Preprint MPI-Ph/93-79 (November 1993)

    ADS  Google Scholar 

  87. P. Gosdzinsky, J. Solà, Phys. Lett. B 254, 139–147 (1991)

    ADS  Google Scholar 

  88. P. Gosdzinsky, J. Solà, Mod. Phys. Lett. A 6, 1943–1952 (1991)

    ADS  Google Scholar 

  89. J. Grifols, J. Solà, Phys. Lett. B 137, 257 (1984)

    ADS  Google Scholar 

  90. J. Grifols, J. Solà, Nucl. Phys. B 253, 47 (1985)

    ADS  Google Scholar 

  91. A. Dabelstein, W. Hollik, W. Mosle, arXiv:hep-ph/9506251 (1995)

  92. S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein, J. High Energy Phys. 08, 052 (2006). arXiv:hep-ph/0604147

    ADS  Google Scholar 

  93. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, arXiv:hep-ph/0604180 (2006)

  94. R. Benbrik, M.G. Bock, S. Heinemeyer, O. Stål, G. Weiglein et al., arXiv:1207.1096 [hep-ph] (2012)

  95. A. Freitas, S. Heinemeyer, G. Weiglein, Nucl. Phys. Proc. Suppl. 116, 331–335 (2003). arXiv:hep-ph/0212068

    ADS  Google Scholar 

  96. G. Weiglein, Nucl. Phys. Proc. Suppl. 160, 185–189 (2006)

    ADS  Google Scholar 

  97. J. Haestier, D. Stockinger, G. Weiglein, S. Heinemeyer, arXiv:hep-ph/0506259 (2005)

  98. S. Heinemeyer, G. Weiglein, J. High Energy Phys. 10, 072 (2002). arXiv:hep-ph/0209305

    ADS  Google Scholar 

  99. S. Heinemeyer, G. Weiglein, arXiv:hep-ph/0102317 (2001)

  100. J. van der Bij, M. Veltman, Nucl. Phys. B 231, 205 (1984)

    ADS  Google Scholar 

  101. S. Heinemeyer, W. Hollik, F. Merz, S. Peñaranda, Eur. Phys. J. C 37, 481–493 (2004). arXiv:hep-ph/0403228

    ADS  Google Scholar 

  102. S. Peñaranda, S. Heinemeyer, W. Hollik, arXiv:hep-ph/0506104 (2005)

  103. J.M. Frere, J.A.M. Vermaseren, Z. Phys. C 19, 63 (1983)

    ADS  Google Scholar 

  104. S. Bertolini, Nucl. Phys. B 272, 77 (1986)

    ADS  Google Scholar 

  105. W. Hollik, Z. Phys. C 32, 291 (1986)

    ADS  Google Scholar 

  106. W. Hollik, Z. Phys. C 37, 569 (1988)

    ADS  Google Scholar 

  107. C.D. Froggatt, R.G. Moorhouse, I.G. Knowles, Phys. Rev. D 45, 2471–2481 (1992)

    ADS  Google Scholar 

  108. H.-J. He, N. Polonsky, S.-f. Su, Phys. Rev. D 64, 053004 (2001). arXiv:hep-ph/0102144

    ADS  Google Scholar 

  109. F. Mahmoudi, O. Stål, Phys. Rev. D 81, 035016 (2010). arXiv:0907.1791 [hep-ph]

    ADS  Google Scholar 

  110. A. Pich, P. Tuzón, Phys. Rev. D 80, 091702 (2009). arXiv:0908.1554 [hep-ph]

    ADS  Google Scholar 

  111. M. Jung, A. Pich, P. Tuzón, J. High Energy Phys. 11, 003 (2010). arXiv:1006.0470 [hep-ph]

    ADS  Google Scholar 

  112. A.J. Buras, M.V. Carlucci, S. Gori, G. Isidori, J. High Energy Phys. 10, 009 (2010). arXiv:1005.5310 [hep-ph]

    ADS  Google Scholar 

  113. D. López-Val, J. Solà, Phys. Rev. D 81, 033003 (2010). arXiv:0908.2898 [hep-ph]

    ADS  Google Scholar 

  114. R.A. Jiménez, J. Solà, Phys. Lett. B 389, 53–61 (1996). arXiv:hep-ph/9511292

    ADS  Google Scholar 

  115. J.A. Coarasa, R.A. Jimenez, J. Solà, Phys. Lett. B 389, 312–320 (1996). arXiv:hep-ph/9511402

    ADS  Google Scholar 

  116. M.S. Carena, H.E. Haber, Prog. Part. Nucl. Phys. 50, 63–152 (2003). arXiv:hep-ph/0208209

    ADS  Google Scholar 

  117. S. Heinemeyer, Acta Phys. Pol. B 39, 2673–2692 (2008). arXiv:0807.2514 [hep-ph]

    ADS  Google Scholar 

  118. A. Djouadi, Phys. Rep. 459, 1–241 (2008). arXiv:hep-ph/0503173 [hep-ph]

    ADS  Google Scholar 

  119. H. Flacher et al., Eur. Phys. J. C 60, 543–583 (2009). arXiv:0811.0009 [hep-ph]

    ADS  Google Scholar 

  120. S.R. Juárez, D. Morales, P. Kielanowski, arXiv:1201.1876 [hep-ph] (2012)

  121. F. Mahmoudi, Comput. Phys. Commun. 178, 745–754 (2008). arXiv:0710.2067 [hep-ph]

    ADS  MATH  Google Scholar 

  122. F. Mahmoudi, Comput. Phys. Commun. 180, 1579–1613 (2009). arXiv:0808.3144 [hep-ph]

    ADS  Google Scholar 

  123. A.W. El Kaffas, P. Osland, O.M. Ogreid, Phys. Rev. D 76, 095001 (2007). arXiv:0706.2997 [hep-ph]

    ADS  Google Scholar 

  124. A.W. El Kaffas, P. Osland, O.M. Ogreid, Nonlinear Phenom. Complex Syst. 10, 347–357 (2007). arXiv:hep-ph/0702097

    Google Scholar 

  125. A. Azatov, S. Chang, N. Craig, J. Galloway, arXiv:1206.1058 [hep-ph] (2012)

  126. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, arXiv:1207.1718 [hep-ph] (2012)

  127. D. Eriksson, J. Rathsman, O. Stål, Comput. Phys. Commun. 181, 189–205 (2010). arXiv:0902.0851 [hep-ph]

    ADS  MATH  Google Scholar 

  128. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 [hep-ph]

    ADS  MATH  Google Scholar 

  129. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898 [hep-ph]

    ADS  Google Scholar 

  130. G. Ferrera, J. Guasch, D. López-Val, J. Solà, Phys. Lett. B 659, 297–307 (2008). arXiv:0707.3162 [hep-ph]

    ADS  Google Scholar 

  131. G. Ferrera, J. Guasch, D. López-Val, J. Solà, PoS RADCOR2007, 043 (2007). arXiv:0801.3907 [hep-ph]

  132. A. Arhrib, R. Benbrik, C.-W. Chiang, Phys. Rev. D 77, 115013 (2008). arXiv:0802.0319 [hep-ph]

    ADS  Google Scholar 

  133. R.N. Hodgkinson, D. López-Val, J. Solà, Phys. Lett. B 673, 47–56 (2009). arXiv:0901.2257 [hep-ph]

    ADS  Google Scholar 

  134. N. Bernal, D. López-Val, J. Solà, Phys. Lett. B 677, 39–47 (2009). arXiv:0903.4978 [hep-ph]

    ADS  Google Scholar 

  135. D. López-Val, J. Solà, Phys. Lett. B 702, 246–255 (2011). arXiv:1106.3226 [hep-ph]

    ADS  Google Scholar 

  136. J. Solà, D. López-Val, Nuovo Cimento C 34S1, 57–67 (2011). arXiv:1107.1305 [hep-ph]

    Google Scholar 

  137. F. Cornet, W. Hollik, Phys. Lett. B 669, 58–61 (2008). arXiv:0808.0719 [hep-ph]

    ADS  Google Scholar 

  138. E. Asakawa, D. Harada, S. Kanemura, Y. Okada, K. Tsumura, Phys. Lett. B 672, 354–360 (2009). arXiv:0809.0094 [hep-ph]

    ADS  Google Scholar 

  139. A. Arhrib, R. Benbrik, C.-H. Chen, R. Santos, Phys. Rev. D 80, 015010 (2009). arXiv:0901.3380 [hep-ph]

    ADS  Google Scholar 

  140. E. Asakawa, D. Harada, S. Kanemura, Y. Okada, K. Tsumura, Phys. Rev. D 82, 115002 (2010). arXiv:1009.4670 [hep-ph]

    ADS  Google Scholar 

  141. A. Arhrib, G. Moultaka, Nucl. Phys. B 558, 3–40 (1999). arXiv:hep-ph/9808317

    ADS  Google Scholar 

  142. J. Guasch, W. Hollik, A. Kraft, Nucl. Phys. B 596, 66–80 (2001)

    ADS  Google Scholar 

  143. D. López-Val, J. Solà, in PoS RADCOR2009 (2010), p. 045. arXiv:1001.0473 [hep-ph]

    Google Scholar 

  144. J. Solà, D. López-Val, Fortschr. Phys. 58, 660–664 (2010)

    Google Scholar 

  145. M. Consoli, W. Hollik, F. Jegerlehner, Phys. Lett. B 227, 167 (1989)

    ADS  Google Scholar 

  146. A. Freitas, W. Hollik, W. Walter, G. Weiglein, Nucl. Phys. B 632, 189–218 (2002). arXiv:hep-ph/0202131

    ADS  Google Scholar 

  147. M. Awramik, M. Czakon, Phys. Rev. Lett. 89, 241801 (2002). arXiv:hep-ph/0208113

    ADS  Google Scholar 

  148. M. Awramik, M. Czakon, A. Onishchenko, O. Veretin, Phys. Rev. D 68, 053004 (2003). arXiv:hep-ph/0209084

    ADS  Google Scholar 

  149. M. Awramik, M. Czakon, Phys. Lett. B 568, 48–54 (2003). arXiv:hep-ph/0305248 [hep-ph]

    ADS  Google Scholar 

  150. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). arXiv:hep-ph/0311148 [hep-ph]

    ADS  Google Scholar 

  151. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). arXiv:hep-ph/0311148 [hep-ph]

    ADS  Google Scholar 

  152. A. Onishchenko, O. Veretin, Phys. Lett. B 551, 111–114 (2003). arXiv:hep-ph/0209010

    ADS  Google Scholar 

  153. J.J. van der Bij, K.G. Chetyrkin, M. Faisst, G. Jikia, T. Seidensticker, Phys. Lett. B 498, 156–162 (2001). arXiv:hep-ph/0011373

    ADS  Google Scholar 

  154. W. Grimus, L. Lavoura, O.M. Ogreid, P. Osland, J. Phys. G 35, 075001 (2008). arXiv:0711.4022 [hep-ph]

    ADS  Google Scholar 

  155. W. Grimus, L. Lavoura, O. Ogreid, P. Osland, Nucl. Phys. B 801, 81–96 (2008). arXiv:0802.4353 [hep-ph]

    ADS  Google Scholar 

  156. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260

    ADS  MATH  Google Scholar 

  157. A. Djouadi, C. Verzegnassi, Phys. Lett. B 195, 265 (1987)

    ADS  Google Scholar 

  158. A. Djouadi, Nuovo Cimento A 100, 357 (1988)

    ADS  Google Scholar 

  159. B.A. Kniehl, Nucl. Phys. B 347, 86–104 (1990)

    ADS  Google Scholar 

  160. F. Halzen, B.A. Kniehl, Nucl. Phys. B 353, 567–590 (1991)

    ADS  Google Scholar 

  161. B.A. Kniehl, A. Sirlin, Nucl. Phys. B 371, 141–148 (1992)

    ADS  Google Scholar 

  162. B.A. Kniehl, A. Sirlin, Phys. Rev. D 47, 883–893 (1993)

    ADS  Google Scholar 

  163. S. Fanchiotti, B.A. Kniehl, A. Sirlin, Phys. Rev. D 48, 307–331 (1993). arXiv:hep-ph/9212285 [hep-ph]

    ADS  Google Scholar 

  164. A. Djouadi, P. Gambino, Phys. Rev. D 49, 3499–3511 (1994). arXiv:hep-ph/9309298 [hep-ph]

    ADS  Google Scholar 

  165. L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, Phys. Lett. B 336, 560–566 (1994). arXiv:hep-ph/9406363 [hep-ph]

    ADS  Google Scholar 

  166. K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Phys. Rev. Lett. 75, 3394–3397 (1995). arXiv:hep-ph/9504413 [hep-ph]

    ADS  Google Scholar 

  167. K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Nucl. Phys. B 482, 213–240 (1996). arXiv:hep-ph/9606230 [hep-ph]

    ADS  Google Scholar 

  168. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. Lett. 38, 883–885 (1977)

    ADS  Google Scholar 

  169. B.W. Lee, C. Quigg, H. Thacker, Phys. Rev. D 16, 1519 (1977)

    ADS  Google Scholar 

  170. A. Arhrib, arXiv:hep-ph/0012353 (2000)

  171. A.G. Akeroyd, A. Arhrib, E.-M. Naimi, Phys. Lett. B 490, 119 (2000). arXiv:hep-ph/0006035

    ADS  Google Scholar 

  172. S. Kanemura, T. Kubota, E. Takasugi, Phys. Lett. B 313, 155–160 (1993). arXiv:hep-ph/9303263

    ADS  Google Scholar 

  173. J. Maalampi, J. Sirkka, I. Vilja, Phys. Lett. B 265, 371–376 (1991)

    ADS  Google Scholar 

  174. A.G. Akeroyd, A. Arhrib, E.-M. Naimi, Phys. Lett. B 490, 119–124 (2000). arXiv:hep-ph/0006035

    ADS  Google Scholar 

  175. I.F. Ginzburg, I.P. Ivanov, Phys. Rev. D 72, 115010 (2005). arXiv:hep-ph/0508020

    ADS  Google Scholar 

  176. P. Osland, P.N. Pandita, L. Selbuz, Phys. Rev. D 78, 015003 (2008). arXiv:0802.0060 [hep-ph]

    ADS  Google Scholar 

  177. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189–213 (1972)

    ADS  Google Scholar 

  178. T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153–165 (1999). arXiv:hep-ph/9807565

    ADS  Google Scholar 

  179. T. Hahn, M. Rauch, Nucl. Phys. Proc. Suppl. 157, 236–240 (2006). arXiv:hep-ph/0601248 [hep-ph]

    ADS  Google Scholar 

  180. M. Frank et al., J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326

    ADS  Google Scholar 

  181. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

    ADS  Google Scholar 

  182. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  183. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320

    ADS  MATH  Google Scholar 

  184. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, arXiv:1207.1348 [hep-ph] (2012)

  185. T. Electroweak, Working Group and CDF and D0 Collaborations. FERMILAB-TM-2504-E, CDF-NOTE-10549, D0-NOTE-6222. arXiv:1107.5255 [hep-ex]

  186. M. Awramik, M. Czakon, Nucl. Phys. Proc. Suppl. 116, 238–242 (2003). arXiv:hep-ph/0211041 [hep-ph]

    ADS  Google Scholar 

  187. A. Freitas, W. Hollik, W. Walter, G. Weiglein, Phys. Lett. B 495, 338–346 (2000). arXiv:hep-ph/0007091 [hep-ph]

    ADS  Google Scholar 

  188. M. Faisst, J.H. Kuhn, T. Seidensticker, O. Veretin, Nucl. Phys. B 665, 649–662 (2003). arXiv:hep-ph/0302275

    ADS  Google Scholar 

  189. R. Boughezal, J.B. Tausk, J.J. van der Bij, Nucl. Phys. B 713, 278–290 (2005). arXiv:hep-ph/0410216

    ADS  Google Scholar 

  190. Y. Schroder, M. Steinhauser, Phys. Lett. B 622, 124–130 (2005). arXiv:hep-ph/0504055

    ADS  Google Scholar 

  191. K.G. Chetyrkin, M. Faisst, J.H. Kuhn, P. Maierhofer, C. Sturm, Phys. Rev. Lett. 97, 102003 (2006). arXiv:hep-ph/0605201

    ADS  Google Scholar 

  192. R. Boughezal, M. Czakon, Nucl. Phys. B 755, 221–238 (2006). arXiv:hep-ph/0606232

    ADS  Google Scholar 

  193. O. Buchmüller, R. Cavanaugh, A. De Roeck, J. Ellis, H. Flacher et al., Phys. Rev. D 81, 035009 (2010). arXiv:0912.1036 [hep-ph]

    ADS  Google Scholar 

  194. J.A. Evans, M.A. Luty, Phys. Rev. Lett. 103, 101801 (2009). arXiv:0904.2182 [hep-ph]

    ADS  Google Scholar 

  195. J.A. Coarasa, D. Garcia, J. Guasch, R.A. Jiménez, J. Solà, Eur. Phys. J. C 2, 373–392 (1998). arXiv:hep-ph/9607485

    ADS  Google Scholar 

  196. M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Nucl. Phys. B 577, 88–120 (2000). arXiv:hep-ph/9912516

    ADS  Google Scholar 

  197. J. Guasch, J. Solà, W. Hollik, Phys. Lett. B 437, 88–99 (1998). arXiv:hep-ph/9802329

    ADS  Google Scholar 

  198. A. Belyaev, D. Garcia, J. Guasch, J. Solà, Phys. Rev. D 65, 031701 (2002). arXiv:hep-ph/0105053

    ADS  Google Scholar 

  199. S. Béjar, J. Guasch, D. López-Val, J. Solà, Phys. Lett. B 668, 364–372 (2008). arXiv:0805.0973 [hep-ph]

    ADS  Google Scholar 

  200. S. Béjar, J. Guasch, D. López-Val, J. Solà, Phys. Rev. D 81, 113005 (2010). arXiv:1003.4312 [hep-ph]

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Wolfgang Hollik for enlightening conversations on this topic and also for providing useful references. The work of J.S. has been supported in part by the research Grant PA-2010-20807; by the Consolider CPAN project; and also by DIUE/CUR Generalitat de Catalunya under project 2009SGR502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David López-Val.

Appendix

Appendix

For the sake of completeness, we provide herewith a more detailed analytical account on selected aspects of our calculation. All UV divergences we handle by means of conventional dimensional regularization in the ’t Hooft–Veltman scheme, setting the number of dimensions to d=4−ε. As usual, we introduce an (arbitrary) mass scale μ in front of the loop integrals in order not to alter the dimension of the result in d dimensions with respect to d=4. After renormalization (in the on-shell scheme, in our case) the results for the physical quantities are finite in the limit d→4. Furthermore, in the practical aspect of the calculation all one-loop structures are reduced in terms of standard Passarino–Veltman coefficients in the conventions of Refs. [178, 179].

•One loop functions at zero momentum

the one-loop vacuum integrals that enter the evaluation of the parameter δρ, which is built upon the weak gauge boson self energies at vanishing momenta, cf. Eq. (8), read as follows:

(47)
(48)
(49)

where Δ ϵ =2/ϵ+1−γ E +log(4πμ 2) and the function F(x,y) is defined as follows:

$$ F(x,y) = F(y,x) = \begin{cases} \frac{x+y}{2}- \frac{xy}{x-y} \log(\frac{x}{y}) &x \neq y, \\ 0 & x=y. \end{cases} $$
(50)

The tilded notation for the Passarino–Veltman functions, e.g.

(51)

indicates that these integrals are evaluated at zero momentum. The parameters A,B can be identified with the (squared of the) masses of the virtual particles propagating in the loop, \(A\equiv m_{1}^{2}\), \(B\equiv m_{2}^{2}\).

With these expressions at hand, it is straightforward to write down a compact analytical form for δρ 2HDM at one-loop in the ’t Hooft–Feynman gauge, starting from the definition of Eq. (8):

(52)

From the above equation we can explicitly read off how the size of δρ depends on the mass splitting between the different Higgs bosons, as well as on the strength of the Higgs/gauge boson couplings—which is modulated by tanβ and the mixing angle α. The first two lines of the full expression (52) is the part that we have denoted \(\delta\rho_{2\mathrm{HDM}}^{*}\) in Sect. 2.4, see Eq. (15). We remark that for \(M_{\mathrm{A}^{0}}\to M_{\mathrm{H}^{\pm}}\) and |βα|→π/2 (in which the h 0 field behaves SM-like) the full δρ 2HDM→0. This is the precise formulation of the decoupling regime for the unconstrained 2HDM.

In the case of the SM the Higgs contribution to the δρ-parameter (8) is not finite if taken in an isolated form. The complete bosonic contribution to Δr is of course finite and gauge invariant, and therefore unambiguous. To define a Higgs part of it is then a bit a matter of convention. What is important is that the complete M H-dependence is exhibited correctly and coincides in all conventions. After removing the UV-parts which cancel against other bosonic contributions one arrives at

(53)

The explicit dependence on the scale μ is unavoidable in quantities which are not UV-finite by themselves. It is, however, natural to set e.g. the EW scale choice μ=M W. In the limit \(M_{\mathrm{H}}^{2}\gg M_{\text{W}}^{2}\) we can see Veltman’s screening theorem at work in the SM, as there remain no \(M_{\mathrm{H}}^{2}\) terms but a logarithmic Higgs mass dependence. Indeed, in that limit the expression (53) reduces to

$$ \delta\rho^{H}_\mathrm{ SM}\simeq- \frac{3\sqrt{2} G_F M_{\text {W}}^2}{16 \pi^2} \frac{s_{\text{W}}^2}{c_{\text{W}}^2} \biggl\{ \ln\frac{M_\mathrm{H}^2}{M_\mathrm{W}^2}-\frac{5}{6} \biggr\} , $$
(54)

which coincides with the result quoted in Eq. (12) of Sect. 2.3.

The SM Higgs boson contribution to δρ can also be retrieved from the 2HDM result (52) by selecting the h0 parts of the contributions involving the h0 and the gauge bosons, namely in the last line of that equation. By performing the identification H≡h0 and removing the trigonometric factors we are led to

(55)

We see that the last expression coincides with Eq. (53) up to finite additive parts, which of course reflects the arbitrariness of the scale setting μ. As we said, this is not important because the full bosonic contribution to Δr is finite and unambiguous. The fact that we can recover the SM result from (52) in such a way suggests that the expression in the first line of (55) should be subtracted from (52) in order to compute the genuine 2HDM effects on δρ, i.e. the Higgs boson quantum effects beyond those associated to the Higgs sector of the SM. This is in fact the practical recipe that we follow in this paper. Finally, let us notice that the \(\delta\rho_{2\mathrm{HDM}}^{*}\) part of (52), i.e. the one which is completely unrelated to the SM Higgs contribution, is precisely the part of the full δρ 2HDM that violates the screening theorem in the 2HDM, as is manifest from Eq. (15) of Sect. 2.4.

•2HDM contributions to the gauge boson self-energies

We quote herewith their complete analytical form, in terms of the standard Passarino–Veltman coefficients and following the conventions of Ref. [178, 179]. The self-energies are evaluated for on-shell gauge bosons, e.g. \(p^{2} = M^{2}_{V} [V = \mbox{W}^{\pm}, \mathrm {Z}^{0}]\), in the way they enter the calculation of Δr.

  • Two Higgs-boson contributions:

    (56)
    (57)
  • Higgs/gauge boson and Higgs/Goldstone boson contributions:

    (58)
    (59)

Let us notice that, in the last two expressions, we have explicitly removed the overlap with the SM Higgs boson contribution, to wit:

(60)

•Effective Higgs/gauge boson interactions

To better illustrate how we build up in practice the effective Higgs/gauge boson couplings employed in this study, herewith we provide explicit analytical details for the construction of one of such Born-improved interactions. We carry out the calculation with the help of the standard algebraic packages FeynArts and FormCalc [156, 178, 179]. Without loss of generality, let us take the concrete case of the Z boson coupling to the \(\mathcal{CP}\)-odd and the light \(\mathcal{CP}\)-even neutral Higgs bosons \([g_{\mathrm{h}^{0}\mathrm{A}^{0}\mathrm{Z}^{0}}]\). A sample of the Feynman diagrams describing the \(\mathcal{O}(\lambda^{2}_{5})\) corrections to this coupling is displayed in the upper row of Fig. 8. The general structure of the associated form factor \(a_{\mathrm{h}^{0}\mathrm{A}^{0}\mathrm{Z}^{0}}\) may be cast as:

(61)

Notice that we define our form factors to be real, in order to preserve the hermiticity of the Born-improved Lagrangians derived from them. The different building blocks of Eq. (61) correspond to:

  1. (a)

    \(V_{\mathrm{h}^{0}\mathrm{A}^{0}\mathrm{Z}^{0}}\), the genuine vertex corrections (cf. e.g. the first two diagrams in the upper row of Fig. 8). For illustration purposes, we provide its complete analytical form:

    (62)
  2. (b)

    The wave-function corrections associated to each of the external Higgs boson legs (including, as we single out in the last term of Eq. (61), the h0–H0 mixing one-loop diagrams):

    (63)
    (64)
    (65)

In the last equation, the h0–H0 mixing self-energy \(\hat{\varSigma}_{\mathrm{h}^{0}\mathrm{H}^{0}}(q^{2}) \allowbreak = \varSigma _{\mathrm{h}^{0}\mathrm{H}^{0}}(q^{2}) + \delta Z_{\mathrm{h}^{0}\mathrm{H}^{0}}(q^{2}-M^{2}_{\mathrm{h}^{0}})/2 + \delta Z_{\mathrm{h}^{0}\mathrm{H}^{0}}(q^{2}-M^{2}_{\mathrm{H}^{0}})/2 - \delta M^{2}_{\mathrm{h}^{0}\mathrm{H}^{0}}\) involves the renormalization of the mixing angle α, which we anchor via the relation \(\operatorname{Re}\hat{\varSigma}_{\mathrm{h}^{0}\mathrm{H}^{0}}(q^{2}) = 0\) according to [113], with the renormalization scale chosen at the average mass \(q^{2} \equiv(M^{2}_{\mathrm {h}^{0}}+M^{2}_{\mathrm{H}^{0}})/2\). As mentioned above, the tilded Passarino–Veltman functions are evaluated at vanishing external momentum.

Let us note in passing that, for the case of the g hVV-type couplings, and due to he fact that just one single scalar leg is present there, only pieces of type (b) shall give rise to \(\mathcal{O}(\lambda^{2}_{5})\) contributions. The same holds as well for the Higgs/gauge/Goldstone boson couplings [g hVG].

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Val, D., Solà, J. Δr in the Two-Higgs-Doublet Model at full one loop level—and beyond. Eur. Phys. J. C 73, 2393 (2013). https://doi.org/10.1140/epjc/s10052-013-2393-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2393-y

Keywords

Navigation