Skip to main content
Log in

CP violation and mass hierarchy at medium baselines in the large θ 13 era

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The large value of θ 13 recently measured by rector and accelerator experiments opens unprecedented opportunities for precision oscillation physics. In this paper, we reconsider the physics reach of medium baseline superbeams. For θ 13≃9 we show that facilities at medium baselines—i.e. \(L \simeq \mathcal{O}\) (1000 km)—remain optimal for the study of CP violation in the leptonic sector, although their ultimate precision strongly depends on experimental systematics. This is demonstrated in particular for facilities of practical interest in Europe: a CERN to Gran Sasso and CERN to Phyäsalmi ν μ beam based on the present SPS and on new high power 50 GeV proton driver. Due to the large value of θ 13, spectral information can be employed at medium baselines to resolve the sign ambiguity and determine the neutrino mass hierarchy. However, longer baselines, where matter effects dominate the ν μ ν e transition, can achieve much stronger sensitivity to \(\operatorname{sign}(\Delta m^{2})\) even at moderate exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Itow et al. (The T2K Collaboration), The JHF-Kamioka neutrino project, arXiv:hep-ex/0106019

  2. F. Ardellier et al. (Double Chooz Collaboration), Double Chooz: a search for the neutrino mixing angle theta(13), arXiv:hep-ex/0606025

  3. X. Guo et al. (Daya-Bay Collaboration), A precision measurement of the neutrino mixing angle theta(13) using reactor antineutrinos at Daya Bay, arXiv:hep-ex/0701029

  4. S.B. Kim (RENO Collaboration), RENO: reactor experiment for neutrino oscillation at Yonggwang. AIP Conf. Proc. 981, 205 (2008)

    Article  ADS  Google Scholar 

  5. S.B. Kim (RENO Collaboration), RENO: reactor experiment for neutrino oscillation at Yonggwang. J. Phys. Conf. Ser. 120, 052025 (2008)

    Article  ADS  Google Scholar 

  6. F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  Google Scholar 

  7. J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012)

    Article  ADS  Google Scholar 

  8. M. Ishitsuka, for the Double Chooz Collaboration. Talk at Neutrino 2012, Kyoto, 6–9 June 2012. Available at http://neu2012.kek.jp

  9. K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011)

    Article  ADS  Google Scholar 

  10. K. Sakashita, for the T2K Collaboration. Talk at ICHEP 2012, Melbourne, 4–11 July 2012. Available at www.ichep2012.com.au

  11. M. Apollonio et al. (CHOOZ Collaboration), Eur. Phys. J. C 27, 331 (2003)

    Article  ADS  Google Scholar 

  12. F. Boehm et al., Phys. Rev. D 64, 112001 (2001)

    Article  ADS  Google Scholar 

  13. G. Altarelli, F. Feruglio, New J. Phys. 6, 106 (2004)

    Article  ADS  Google Scholar 

  14. M. Mezzetto, T. Schwetz, J. Phys. G 37, 103001 (2010)

    Article  ADS  Google Scholar 

  15. A. Bandyopadhyay et al. (ISS Physics Working Group Collaboration), Rep. Prog. Phys. 72, 106201 (2009)

    Article  ADS  Google Scholar 

  16. R. Battiston, M. Mezzetto, P. Migliozzi, F. Terranova, Riv. Nuovo Cimento 033, 313 (2010)

    Google Scholar 

  17. G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, Phys. Rev. D 86, 013012 (2012)

    Article  ADS  Google Scholar 

  18. P. Huber, M. Lindner, M. Rolinec, T. Schwetz, W. Winter, Phys. Rev. D 70, 073014 (2004)

    Article  ADS  Google Scholar 

  19. V. Barger, P. Huber, D. Marfatia, W. Winter, Phys. Rev. D 76, 053005 (2007)

    Article  ADS  Google Scholar 

  20. P. Huber, M. Lindner, T. Schwetz, W. Winter, J. High Energy Phys. 0911, 044 (2009)

    Article  ADS  Google Scholar 

  21. P. Coloma, E. Fernandez-Martinez, J. High Energy Phys. 1204, 089 (2012)

    Article  ADS  Google Scholar 

  22. P. Coloma, A. Donini, E. Fernandez-Martinez, P. Hernandez, J. High Energy Phys. 1206, 073 (2012)

    Article  ADS  Google Scholar 

  23. P. Coloma, E. Fernandez-Martinez, L. Labarga, J. High Energy Phys. 1211, 069 (2012)

    Article  ADS  Google Scholar 

  24. V. Barger, M. Dierckxsens, M. Diwan, P. Huber, C. Lewis, D. Marfatia, B. Viren, Phys. Rev. D 74, 073004 (2006)

    Article  ADS  Google Scholar 

  25. T. Akiri et al. (LBNE Collaboration), The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups, arXiv:1110.6249 [hep-ex]

  26. B. Baibussinov, M. Baldo Ceolin, G. Battistoni, P. Benetti, A. Borio, E. Calligarich, M. Cambiaghi, F. Cavanna et al., Astropart. Phys. 29, 174 (2008)

    Article  ADS  Google Scholar 

  27. D. Autiero, J. Aysto, A. Badertscher, L.B. Bezrukov, J. Bouchez, A. Bueno, J. Busto, J.-E. Campagne et al., J. Cosmol. Astropart. Phys. 0711, 011 (2007)

    Article  ADS  Google Scholar 

  28. A. Rubbia, J. Phys. Conf. Ser. 171, 012020 (2009)

    Article  ADS  Google Scholar 

  29. D. Angus et al. (LAGUNA Collaboration), The LAGUNA design study—towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, arXiv:1001.0077 [physics.ins-det]

  30. A. Rubbia (LAGUNA Collaboration), Acta Phys. Pol. B 41, 1727 (2010)

    Google Scholar 

  31. S.K. Agarwalla, T. Li, A. Rubbia, J. High Energy Phys. 1205, 154 (2012)

    Article  ADS  Google Scholar 

  32. A. Rubbia, Talk at Neutrino 2012, Kyoto, 6–9 June 2012. Available at http://neu2012.kek.jp

  33. M. Freund, Phys. Rev. D 64, 053003 (2001)

    Article  ADS  Google Scholar 

  34. K. Asano, H. Minakata, J. High Energy Phys. 1106, 022 (2011)

    Article  ADS  Google Scholar 

  35. L. Votano, Talk at νTURN2012, LNGS, 8–10 May 2012. Available at http://nuturn2012.lngs.infn.it/

  36. S. Amerio et al. (ICARUS Collaboration), Nucl. Instrum. Methods A 527, 329 (2004)

    Article  ADS  Google Scholar 

  37. C. Rubbia, M. Antonello, P. Aprili, B. Baibussinov, M.B. Ceolin, L. Barze, P. Benetti, E. Calligarich et al., J. Instrum. 6, P07011 (2011)

    Article  Google Scholar 

  38. F. Arneodo et al. (ICARUS Collaboration), The ICARUS experiment: a second generation proton decay experiment and neutrino observatory at the Gran Sasso Laboratory, arXiv:hep-ex/0103008

  39. P. Aprili et al., The ICARUS experiment: a second-generation proton decay experiment and neutrino observatory at the Gran Sasso laboratory. Cloning of T600 modules to reach the design sensitive mass. CERN-SPSC-2002-027

  40. C. Rubbia, Talk at νTURN2012, LNGS, 8–10 May 2012. Available at http://nuturn2012.lngs.infn.it/

  41. A. Longhin, Optimization of neutrino beams for underground sites in Europe, arXiv:1206.4294v1

  42. S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  43. J. Allison et al. (GEANT4 Collaboration), IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  44. P. Huber, M. Lindner, W. Winter, Comput. Phys. Commun. 167, 195 (2005)

    Article  ADS  Google Scholar 

  45. P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, Comput. Phys. Commun. 177, 432 (2007)

    Article  ADS  Google Scholar 

  46. M. Bonesini, A. Marchionni, F. Pietropaolo, T. Tabarelli de Fatis, Eur. Phys. J. C 20, 13 (2001)

    Article  ADS  Google Scholar 

  47. A. Meregaglia, A. Rubbia, J. High Energy Phys. 0611, 032 (2006)

    Article  ADS  Google Scholar 

  48. A. Ankowski et al. (ICARUS Collaboration), Acta Phys. Pol. B 41, 103 (2010)

    Google Scholar 

  49. C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski et al., Nucl. Instrum. Methods A 614, 87 (2010)

    Article  ADS  Google Scholar 

  50. P. Huber, M. Lindner, W. Winter, Nucl. Phys. B 645, 3 (2002)

    Article  ADS  Google Scholar 

  51. H. Minakata, H. Nunokawa, J. High Energy Phys. 0110, 001 (2001)

    Article  ADS  Google Scholar 

  52. V. Barger, D. Marfatia, K. Whisnant, Phys. Rev. D 65, 073023 (2002)

    Article  ADS  Google Scholar 

  53. P. Huber, M. Mezzetto, T. Schwetz, J. High Energy Phys. 0803, 021 (2008)

    Article  ADS  Google Scholar 

  54. P. Coloma, P. Huber, J. Kopp, W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ 13, arXiv:1209.5973 [hep-ph]

  55. P. Coloma, T. Li, S. Pascoli, A comparative study of long-baseline superbeams within LAGUNA for large θ 13, arXiv:1206.4038 [hep-ph]

  56. D.S. Ayres et al. (NOvA Collaboration), NOvA proposal to build a 30-kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI beamline, arXiv:hep-ex/0503053

  57. D.S. Ayres et al. The NOνA Technical Design Report, FERMILAB-DESIGN-2007-01 (2007)

Download references

Acknowledgements

We wish to express our gratitude to P. Coloma, E. Fernandez Martinez, F. Ferroni, A. Masiero, A. Meregaglia, A. Rubbia, C. Rubbia, and L. Votano for useful information and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Terranova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dusini, S., Longhin, A., Mezzetto, M. et al. CP violation and mass hierarchy at medium baselines in the large θ 13 era. Eur. Phys. J. C 73, 2392 (2013). https://doi.org/10.1140/epjc/s10052-013-2392-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2392-z

Keywords

Navigation