Skip to main content
Log in

CPT-violating leptogenesis induced by gravitational defects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We explore leptogenesis induced by the propagation of neutrinos in gravitational backgrounds that may occur in string theory. The first background is due to linear dilatons and the associated Kalb–Ramond field (axion) in four non-compact space–time dimensions of the string, and can be described within the framework of local effective Lagrangians. The axion is linear in the time coordinate of the Einstein frame and gives rise to a constant torsion which couples to the fermion spin through a gravitational covariant derivative. This leads to different energy-momentum dispersion relations for fermions and antifermions. As a result leptogenesis and baryogenesis can arise in various scenarios. The next two backgrounds go beyond the local effective Lagrangian framework. One is a stochastic (Lorentz violating) Finsler metric which again leads to different dispersion relations between fermions and antifermions. The third background of primary interest is the one due to populations of stochastically fluctuating point-like space–time defects that can be encountered in string/brane theory (D0-branes). Only neutral matter interacts non-trivially with these intrinsic defects, as a consequence of charge conservation. Hence, such a background singles out neutrinos among the Standard Model excitations as the ones interacting predominantly with the defects. The back-reaction of the defects on the space–time due to their interaction with neutral matter results in stochastic Finsler-like metrics (similar to our second background). On average, the stochastic fluctuations of the D0-brane defects preserve Lorentz symmetry, but their variance is nonzero. Interestingly, the particle–antiparticle asymmetry comes out naturally to favour matter over antimatter in this third background, once the effects of the kinematics of the scattering of the D-branes with matter is incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The above considerations concern the dispersion relations for any fermion, not only neutrinos. However, when one considers matter excitations from the vacuum, as relevant for leptogenesis, we need chiral fermions to get non-trivial CPTV asymmetries in populations of particle and antiparticles, because \(\langle\psi^{\dagger}\gamma^{5} \psi\rangle = - \langle\psi_{L}^{\dagger}\gamma^{5} \psi_{L}\rangle + \langle\psi_{R}^{\dagger}\gamma^{5} \psi_{R}\rangle \).

  2. We note that fermions coupled to Kalb–Ramond torsion tensors H μνρ have been considered previously [50, 51] but from a different perspective than ours.

  3. We mention, for completeness, that the other popular class of Finsler geometries, which appears in the general relativistic version [6366] of the so-called Very Special Relativity Model [78], and cosmological extensions thereof [71, 73], are not characterised by CPTV in the dispersion relations of the spin-curvature type discussed in Sect. 2.3. In fact such VSR-related models have been proposed in the past as candidates for the generation of L conserving neutrino masses [79], and hence our L violating considerations in this work do not apply.

  4. It should be remarked that for the effective compactified D-“particles” the interactions with the charged matter excitations are suppressed relative to the neutral ones [82]. Hence, even in this case, it is the electrically neutral excitations which interact primarily with the D-foam.

  5. For brevity, in what follows we ignore potential contributions induced by compactification of the D8 brane worlds to D3 branes, stating only the expressions for the induced potential on the uncompactified brane world as a result of a stretched string between the latter and the D-particle—the compactification does not affect our arguments on the negative energy contributions to the brane vacuum energy.

  6. Ignoring the flavour structure, the metric (53) can be written as

    $$ ds^2 = dt^2 + 2 u_i\, dx^i\, dt - \delta_{ij}\, dx^i\, dx^j . $$
    (55)

    This metric was determined from world-sheet conformal field theory considerations [76] and represents a dragging of the frame by the Galilean (slowly moving) D particle, which moves on a flat space–time background. However, the string excitations represent relativistic particles, and as such they move according to the rules of special relativity. Any four vectors attached to the strings, such as a four velocity, will evolve by a series of infinitesimal Lorentz boosts induced by the change of the D particle velocity relative to the particle. In this sense, one may perform a time coordinate change in the metric (55) to write in the form, up to terms u 3 for small recoil velocities |u|≪1,

    $$ ds^2 = dt_\mathrm{ff} ^2 + 2 u_i\, dx^i\, dt_\mathrm{ff} - \delta_{ij} \bigl(dx^i - u^i\, dt_\mathrm{ff} \bigr) \bigl(dx^j - u^j\, dt_\mathrm{ff}\bigr) + \mathcal{O} \bigl(u^3\bigr). $$
    (56)

    The metric (56) is nothing but the so-called Gullstrand–Painlevé metric [89], representing the geometry in the exterior of a Schwarzschild black hole, where the falling space into the black hole is represented as a Galilean river on a flat space–time in which relativistic fishes swim. The river represents the frame of the recoiling D particle, while the fishes are the relativistic matter strings. Here t ff is the time of a free-floating observer who is at rest at infinity (compared to the centre of the black hole). In the case of a black hole the relative velocities u i are coordinate dependent, of course, unlike our approximation in the D-foam case, although one may easily consider more general cases, where the recoil velocities of the D-particles in the foam are non-uniform, in which case the analogy with the Gullstrand–Painlevé river would become stronger.

References

  1. J. Christenson, J. Cronin, V. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964). doi:10.1103/PhysRevLett.13.138

    Article  ADS  Google Scholar 

  2. A. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967). Reprinted in “E.W. Kolb, M.S. Turner (eds.), The early universe, 371–373”, and in “D. Lindley et al. (eds.), Cosmology and particle physics, 106–109”, and in “Sov. Phys. Usp. 34 392–393 (1991) [Usp. Fiz. Nauk 161(5) 61–64 (1991)]”

    Google Scholar 

  3. G. Gamow, Phys. Rev. 70, 572 (1946). doi:10.1103/PhysRev7.0.572

    Article  ADS  Google Scholar 

  4. V. Kuzmin, V. Rubakov, M. Shaposhnikov, Phys. Lett. B 155, 36 (1985). doi:10.1016/0370-2693(85)91028-7

    Article  ADS  Google Scholar 

  5. M. Shaposhnikov, Prog. Theor. Phys. 122, 185 (2009). doi:10.1143/PTP.122.185

    Article  ADS  MATH  Google Scholar 

  6. M. Shaposhnikov, I. Tkachev, Phys. Lett. B 639, 414 (2006). doi:10.1016/j.physletb.2006.06.063

    Article  ADS  Google Scholar 

  7. M. Lindner, A. Merle, V. Niro, J. Cosmol. Astropart. Phys. 1101, 034 (2011). doi:10.1088/1475-7516/2011/01/034

    Article  ADS  Google Scholar 

  8. A. Kusenko, F. Takahashi, T.T. Yanagida, Phys. Lett. B 693, 144 (2010). doi:10.1016/j.physletb.2010.08.031

    Article  ADS  Google Scholar 

  9. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). doi:10.1103/PhysRevLett.83.3370

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. Merle, V. Niro, J. Cosmol. Astropart. Phys. 1107, 023 (2011). doi:10.1088/1475-7516/2011/07/023

    Article  ADS  Google Scholar 

  11. J. Barry, W. Rodejohann, H. Zhang, J. High Energy Phys. 1107, 091 (2011). doi:10.1007/JHEP07(2011)091

    Article  ADS  Google Scholar 

  12. J.M. Carmona, J.L. Cortes, A.K. Das, J. Gamboa, F. Mendez, Mod. Phys. Lett. A 21, 883 (2006). doi:10.1142/S0217732306020111

    Article  ADS  Google Scholar 

  13. R. Streater, A. Wightman, PCT, Spin and Statistics, and All That (Princeton University Press, Princeton, 1989)

    MATH  Google Scholar 

  14. O. Bertolami, D. Colladay, V.A. Kostelecky, R. Potting, Phys. Lett. B 395, 178 (1997). doi:10.1016/S0370-2693(97)00062-2

    ADS  Google Scholar 

  15. N.E. Mavromatos, Int. J. Mod. Phys. A 25, 5409 (2010) and references therein. doi:10.1142/S0217751X10050792

    Article  ADS  MATH  Google Scholar 

  16. D. Bao, S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics (Springer, Berlin, 2000). http://books.google.fr/books?id=m11kEYr_V_AC

    Book  MATH  Google Scholar 

  17. C. Johnson, D-Branes. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2002). http://books.google.co.uk/books?id=LeJCOY7VGD0C

    Book  Google Scholar 

  18. J.R. Ellis, N.E. Mavromatos, M. Westmuckett, Phys. Rev. D 70, 044036 (2004). doi:10.1103/PhysRevD.70.044036

    Article  MathSciNet  ADS  Google Scholar 

  19. M.R. Douglas, D.N. Kabat, P. Pouliot, S.H. Shenker, Nucl. Phys. B 485, 85 (1997). doi:10.1016/S0550-3213(96)00619-0

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J.R. Ellis, N.E. Mavromatos, M. Westmuckett, Phys. Rev. D 71, 106006 (2005). doi:10.1103/PhysRevD.71.106006

    Article  MathSciNet  ADS  Google Scholar 

  21. N.E. Mavromatos, in From Fields to Strings, vol. 2, ed. by M. Shifman et al. (World Scientific, Singapore, 2005), pp. 1257–1364

    Google Scholar 

  22. N. Mavromatos, S. Sarkar, Phys. Rev. D 72, 065016 (2005). doi:10.1103/PhysRevD.72.065016

    Article  ADS  Google Scholar 

  23. J. Bernabeu, N.E. Mavromatos, S. Sarkar, Phys. Rev. D 74, 045014 (2006). doi:10.1103/PhysRevD.74.045014

    Article  ADS  Google Scholar 

  24. N.E. Mavromatos, V.A. Mitsou, S. Sarkar, A. Vergou, Eur. Phys. J. C 72, 1956 (2012)

    Article  ADS  Google Scholar 

  25. G. Lambiase, S. Mohanty, J. Cosmol. Astropart. Phys. 0712, 008 (2007). doi:10.1088/1475-7516/2007/12/008

    Article  ADS  Google Scholar 

  26. U. Debnath, B. Mukhopadhyay, N. Dadhich, Mod. Phys. Lett. A 21, 399 (2006). doi:10.1142/S0217732306019542

    Article  ADS  MATH  Google Scholar 

  27. B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  28. G. Dvali, G. Gabadadze, Phys. Lett. B 460, 47 (1999). doi:10.1016/S0370-2693(99)00766-2

    Article  ADS  Google Scholar 

  29. H. Davoudiasl, R. Kitano, G.D. Kribs, H. Murayama, P.J. Steinhardt, Phys. Rev. Lett. 93, 201301 (2004). doi:10.1103/PhysRevLett.93.201301

    Article  ADS  Google Scholar 

  30. H. Li, M.z. Li, X.m. Zhang, Phys. Rev. D 70, 047302 (2004). doi:10.1103/PhysRevD.70.047302

    Article  ADS  Google Scholar 

  31. B. Mukhopadhyay, Mod. Phys. Lett. A 20, 2145 (2005). doi:10.1142/S0217732305017640

    Article  ADS  MATH  Google Scholar 

  32. G. Lambiase, S. Mohanty, Phys. Rev. D 84, 023509 (2011). doi:10.1103/PhysRevD.84.023509

    Article  ADS  Google Scholar 

  33. B. Mukhopadhyay, Class. Quantum Gravity 24, 1433 (2007). doi:10.1088/0264-9381/24/6/004

    Article  ADS  MATH  Google Scholar 

  34. M. Sinha, B. Mukhopadhyay, Phys. Rev. D 77, 025003 (2008). doi:10.1103/PhysRevD.77.025003

    Article  ADS  Google Scholar 

  35. S.M. Carroll, J. Shu, Phys. Rev. D 73, 103515 (2006). doi:10.1103/PhysRevD.73.103515

    Article  ADS  Google Scholar 

  36. A. Dolgov, Phys. At. Nucl. 73, 588 (2010). doi:10.1134/S1063778810040022

    Article  Google Scholar 

  37. G. Barenboim, L. Borissov, J.D. Lykken, A. Smirnov, J. High Energy Phys. 0210, 001 (2002)

    Article  ADS  Google Scholar 

  38. G. Barenboim, N.E. Mavromatos, Phys. Rev. D 70, 093015 (2004). doi:10.1103/PhysRevD.70.093015

    Article  ADS  Google Scholar 

  39. G. Barenboim, N.E. Mavromatos, J. High Energy Phys. 0501, 034 (2005). doi:10.1088/1126-6708/2005/01/034

    Article  ADS  Google Scholar 

  40. R.M. Wald, Phys. Rev. D 21, 2742 (1980). doi:10.1103/PhysRevD.21.2742

    Article  MathSciNet  ADS  Google Scholar 

  41. G. Lindblad, Commun. Math. Phys. 48, 119 (1976). doi:10.1007/BF01608499

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, M. Srednicki, Nucl. Phys. B 241, 381 (1984). doi:10.1016/0550-3213(84)90053-1

    Article  MathSciNet  ADS  Google Scholar 

  43. J.R. Ellis, J.L. Lopez, N. Mavromatos, D.V. Nanopoulos, Phys. Rev. D 53, 3846 (1996). doi:10.1103/PhysRevD.53.3846

    Article  ADS  Google Scholar 

  44. F. Benatti, R. Floreanini, Phys. Rev. D 64, 085015 (2001). doi:10.1103/PhysRevD.64.085015

    Article  ADS  Google Scholar 

  45. G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Phys. Rev. D 76, 033006 (2007). doi:10.1103/PhysRevD.76.033006

    Article  ADS  Google Scholar 

  46. E. Lisi, A. Marrone, D. Montanino, Phys. Rev. Lett. 85, 1166 (2000). doi:10.1103/PhysRevLett.85.1166

    Article  ADS  Google Scholar 

  47. G. Barenboim, N.E. Mavromatos, S. Sarkar, A. Waldron-Lauda, Nucl. Phys. B 758, 90 (2006). doi:10.1016/j.nuclphysb.2006.09.012

    Article  ADS  MATH  Google Scholar 

  48. A. Aguilar et al., Phys. Rev. D 64, 112007 (2001). doi:10.1103/PhysRevD.64.112007

    Article  ADS  Google Scholar 

  49. D.J. Gross, J.H. Sloan, Nucl. Phys. B 291, 41 (1987). doi:10.1016/0550-3213(87)90465-2

    Article  MathSciNet  ADS  Google Scholar 

  50. S. SenGupta, A. Sinha, Phys. Lett. B 514, 109 (2001). doi:10.1016/S0370-2693(01)00785-7

    Article  ADS  Google Scholar 

  51. N. Hari Dass, K. Shajesh, Phys. Rev. D 65, 085010 (2002). doi:10.1103/PhysRevD.65.085010

    Article  ADS  Google Scholar 

  52. I. Antoniadis, C. Bachas, J.R. Ellis, D.V. Nanopoulos, Nucl. Phys. B 328, 117 (1989). doi:10.1016/0550-3213(89)90095-3

    Article  MathSciNet  ADS  Google Scholar 

  53. J.R. Ellis, N. Mavromatos, D.V. Nanopoulos, M. Westmuckett, Int. J. Mod. Phys. A 21, 1379 (2006). doi:10.1142/S0217751X06028990

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. C. Lutken, G. Ross, Phys. Lett. B 653, 363 (2007). doi:10.1016/j.physletb.2007.08.022

    Article  MathSciNet  ADS  Google Scholar 

  55. C. Lutken, G. Ross, Nucl. Phys. B 850, 321 (2011). doi:10.1016/j.nuclphysb.2011.04.020

    Article  ADS  Google Scholar 

  56. A. Pilaftsis, T.E. Underwood, Nucl. Phys. B 692, 303 (2004). doi:10.1016/j.nuclphysb.2004.05.029

    Article  ADS  Google Scholar 

  57. A. Pilaftsis, Phys. Rev. Lett. 95, 081602 (2005). doi:10.1103/PhysRevLett.95.081602

    Article  ADS  Google Scholar 

  58. A. Pilaftsis, T.E. Underwood, Phys. Rev. D 72, 113001 (2005). doi:10.1103/PhysRevD.72.113001

    Article  ADS  Google Scholar 

  59. A. Boyarsky, O. Ruchayskiy, M. Shaposhnikov, Annu. Rev. Nucl. Part. Sci. 59, 191 (2009). doi:10.1146/annurev.nucl.010909.083654

    Article  ADS  Google Scholar 

  60. F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007). doi:10.1103/PhysRevD.75.064015

    Article  MathSciNet  ADS  Google Scholar 

  61. S.I. Vacaru in Chap. 14 of Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity. Selected Works by S. Vacaru, P. Stavrinos, E. Gaburov, D. Gonta (Geometry Balkan Press, 2006)

  62. S.I. Vacaru in Chap. 1 of Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity. Selected Works by S. Vacaru, P. Stavrinos, E. Gaburov, D. Gonta (Geometry Balkan Press, 2006)

  63. G.Y. Bogoslovsky, H. Goenner, Phys. Lett. A 244, 222 (1998). doi:10.1016/S0375-9601(98)00293-X

    Article  ADS  Google Scholar 

  64. G.Y. Bogoslovsky, in Proceedings of Conference (2007). http://inspirehep.net/record/978581 C07-07-02.5

    Google Scholar 

  65. G.Y. Bogoslovsky, SIGMA 4, 045 (2008). doi:10.3842/SIGMA.2008.045

    MathSciNet  Google Scholar 

  66. G. Gibbons, J. Gomis, C. Pope, Phys. Rev. D 76, 081701 (2007). doi:10.1103/PhysRevD.76.081701

    Article  MathSciNet  ADS  Google Scholar 

  67. L. Sindoni, Phys. Rev. D 77, 124009 (2008). doi:10.1103/PhysRevD.77.124009

    Article  MathSciNet  ADS  Google Scholar 

  68. M. Anastasiei, S.I. Vacaru, J. Math. Phys. 50, 013510 (2009). doi:10.1063/1.3043786

    Article  MathSciNet  ADS  Google Scholar 

  69. S.I. Vacaru, arXiv:1206.4012 [math-ph] (2012)

  70. S.I. Vacaru, Class. Quantum Gravity 28, 215001 (2011). doi:10.1088/0264-9381/28/21/215001

    Article  MathSciNet  ADS  Google Scholar 

  71. A. Kouretsis, M. Stathakopoulos, P. Stavrinos, Phys. Rev. D 79, 104011 (2009). doi:10.1103/PhysRevD.79.104011

    Article  MathSciNet  ADS  Google Scholar 

  72. J. Magueijo, L. Smolin, Class. Quantum Gravity 21, 1725 (2004). doi:10.1088/0264-9381/21/7/001

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. A. Kouretsis, M. Stathakopoulos, P. Stavrinos, Phys. Rev. D 82, 064035 (2010). doi:10.1103/PhysRevD.82.064035

    Article  ADS  Google Scholar 

  74. P.C. Stavrinos, S.I. Vacaru, Class. Quantum Gravity 30, 055012 (2013)

    Article  ADS  Google Scholar 

  75. S.I. Vacaru, Int. J. Mod. Phys. D 21, 1250072 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  76. J.R. Ellis, N. Mavromatos, D.V. Nanopoulos, Gen. Relativ. Gravit. 32, 127 (2000). doi:10.1023/A:1001852601248

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. J. Skakala, M. Visser, J. Phys. Conf. Ser. 189, 012037 (2009). doi:10.1088/1742-6596/189/1/012037

    Article  ADS  Google Scholar 

  78. A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 97, 021601 (2006). doi:10.1103/PhysRevLett.97.021601

    Article  MathSciNet  ADS  Google Scholar 

  79. A.G. Cohen, S.L. Glashow, arXiv:hep-ph/0605036 (2006)

  80. G. Gibbons, C. Herdeiro, C. Warnick, M. Werner, Phys. Rev. D 79, 044022 (2009). doi:10.1103/PhysRevD.79.044022

    Article  MathSciNet  ADS  Google Scholar 

  81. J.R. Ellis, N. Mavromatos, D. Nanopoulos, Phys. Lett. B 665, 412 (2008). doi:10.1016/j.physletb.2008.06.029

    Article  MathSciNet  ADS  Google Scholar 

  82. T. Li, N.E. Mavromatos, D.V. Nanopoulos, D. Xie, Phys. Lett. B 679, 407 (2009). doi:10.1016/j.physletb.2009.07.062

    Article  ADS  Google Scholar 

  83. N.E. Mavromatos, S. Sarkar, A. Vergou, Phys. Lett. B 696, 300 (2011). doi:10.1016/j.physletb.2010.12.045

    Article  MathSciNet  ADS  Google Scholar 

  84. M. Duff, R.R. Khuri, J. Lu, Phys. Rep. 259, 213 (1995). doi:10.1016/0370-1573(95)00002-X

    Article  MathSciNet  ADS  Google Scholar 

  85. A.D. Linde, Nucl. Phys. B 216, 421 (1983). doi:10.1016/0550-3213(83)90293-6

    Article  MathSciNet  ADS  Google Scholar 

  86. N.E. Mavromatos, S. Sarkar, W. Tarantino, Phys. Rev. D 80, 084046 (2009). doi:10.1103/PhysRevD.80.084046

    Article  ADS  Google Scholar 

  87. P. Arnold, L. McLerran, Phys. Rev. D 36, 581 (1987). http://link.aps.org/doi/10.1103/PhysRevD.36.581. doi:10.1103/PhysRevD.36.581

    Article  ADS  Google Scholar 

  88. G.G. Raffelt, in Contribution to International School of Conference. http://inspirehep.net/record/974298 C02-07-23.1

  89. A.J. Hamilton, J.P. Lisle, Am. J. Phys. 76, 519 (2008). doi:10.1119/1.2830526

    Article  ADS  Google Scholar 

  90. R. Mossbauer, Z. Phys. A 151(2), 124 (1958). doi:10.1007/BF01344210

    Google Scholar 

  91. E.A. Lim, Phys. Rev. D 71, 063504 (2005). doi:10.1103/PhysRevD.71.063504

    Article  ADS  Google Scholar 

  92. T. Kahniashvili, R. Durrer, Y. Maravin, Phys. Rev. D 78, 123009 (2008). doi:10.1103/PhysRevD.78.123009

    Article  ADS  Google Scholar 

  93. J. Albert et al., Astrophys. J. 667, L21 (2007). doi:10.1086/521982

    Article  ADS  Google Scholar 

  94. J. Albert et al., Phys. Lett. B 668, 253 (2008). doi:10.1016/j.physletb.2008.08.053

    Article  ADS  Google Scholar 

  95. M. Ackermann et al., Astrophys. J. 716, 1178 (2010). doi:10.1088/0004-637X/716/2/1178

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of N.E.M. was supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. N.E.M. and S.S. also thank the STFC UK for partial support under the research grant ST/J002798/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarben Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavromatos, N.E., Sarkar, S. CPT-violating leptogenesis induced by gravitational defects. Eur. Phys. J. C 73, 2359 (2013). https://doi.org/10.1140/epjc/s10052-013-2359-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2359-0

Keywords

Navigation