Skip to main content
Log in

Area spectrum of horizon and black hole entropy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We calculate the number of degrees of freedom in spin network states related to the general area spectrum in loop quantum gravity based on the ABCK framework. We find that a black hole entropy (the logarithm of the degrees of freedom) is proportional to its area but it provides us with a different value of the Barbero–Immirzi parameter (γ=0.9284… or 0.7274…). It means that one should be careful in choosing the area spectrum when we describe a horizon area in full quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we consider the condition A j A but not the interval [AδA,A+δA], which is more appropriate condition for fixing the area. However, this difference does not affect the final result. Because of the expression (21), we find \(S:=\ln W=\ln(\frac{dN}{dA}\delta A ) \approx\ln N(A)\) for A→∞.

References

  1. J.D. Bekenstein, Phys. Rev. D 5, 1239 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  2. S.W. Hawking, Commun. Math. Phys. 25, 167 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Strominger, C. Vafa, Phys. Lett. B 379, 99 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  4. J.M. Maldacena, A. Strominger, Phys. Rev. Lett. 77, 428 (1996)

    Article  ADS  Google Scholar 

  5. C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, Phys. Rev. Lett. 80, 904 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. Ashtekar, J. Baez, K. Krasnov, Adv. Theor. Math. Phys. 4, 1 (2000)

    MathSciNet  MATH  Google Scholar 

  8. M. Bojowald, Living Rev. Relativ. 8, 11 (2005)

    ADS  Google Scholar 

  9. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74, 084003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Natario, R. Schiappa, Adv. Theor. Math. Phys. 8, 1001 (2004)

    MathSciNet  MATH  Google Scholar 

  11. O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003)

    Article  ADS  Google Scholar 

  12. S. Hod, Phys. Rev. Lett. 81, 4293 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. T. Tamaki, H. Nomura, Phys. Rev. D 70, 044041 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007). arXiv:gr-qc/0110034

    Book  MATH  Google Scholar 

  15. C. Rovelli, L. Smolin, Phys. Rev. D 52, 5743 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Rovelli, L. Smolin, Nucl. Phys. B 442, 593 (1995). Erratum, ibid., 456, 753 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Ashtekar, J. Lewandowski, Class. Quantum Gravity 14, A55 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J.F.G. Barbero, Phys. Rev. D 51, 5507 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. G. Immirzi, Nucl. Phys. B, Proc. Suppl. 57, 65 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Ashtekar, A. Corichi, K. Krasnov, Adv. Theor. Math. Phys. 3, 419 (1999)

    MathSciNet  MATH  Google Scholar 

  21. J. Engle, A. Perez, K. Noui, Phys. Rev. Lett. 105, 031302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Engle, K. Noui, A. Perez, D. Pranzetti, Phys. Rev. D 82, 044050 (2010)

    Article  ADS  Google Scholar 

  23. J.F.G. Barbero, E.J.S. Villasenor, Class. Quantum Gravity 26, 035017 (2009)

    Article  ADS  Google Scholar 

  24. K.A. Meissner, Class. Quantum Gravity 21, 5245 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Domagala, J. Lewandowski, Class. Quantum Gravity 21, 5233 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A. Alekseev, A.P. Polychronakos, M. Smedback, Phys. Lett. B 574, 296 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A.P. Polychronakos, Phys. Rev. D 69, 044010 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. I.B. Khriplovich, arXiv:gr-qc/0409031

  29. I.B. Khriplovich, arXiv:gr-qc/0411109

  30. A. Ghosh, P. Mitra, Phys. Lett. B 616, 114 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A. Ghosh, P. Mitra, Int. J. Mod. Phys. 80, 867 (2006)

    Google Scholar 

  32. A. Ghosh, P. Mitra, Phys. Rev. D 74, 064026 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Tamaki, H. Nomura, Phys. Rev. D 72, 107501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Sahlmann, Phys. Rev. D 76, 104050 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Sahlmann, Class. Quantum Gravity 25, 055004 (2008)

    Article  ADS  Google Scholar 

  36. T. Tamaki, Class. Quantum Gravity 24, 3837 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. I. Agulló, J.F. Barbero G, J. Díaz-Polo, E. Fernández-Borja, E.J.S. Villaseñor, Phys. Rev. Lett. 100, 211301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. I. Agulló, J. Díaz-Polo, E. Fernández-Borja, Phys. Rev. D 77, 104024 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  39. J.F.G. Barbero, E.J.S. Villaseñor, Phys. Rev. D 77, 121502(R) (2008)

    Article  ADS  Google Scholar 

  40. M.A. Nielsen, I.L. Chuang, Modern Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  41. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Phys. Rev. D 34, 373 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. ’t Hooft, arXiv:hep-th/0003004

  43. D.R. Terno, Int. J. Mod. Phys. D 14, 2307 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. E.R. Livine, D.R. Terno, Nucl. Phys. B 741, 131 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. W. Donnelly, Phys. Rev. D 77, 104006 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  46. M.H. Ansari, Nucl. Phys. B 783, 179 (2007). Erratum, ibid., 795, 635 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. K. Krasnov, C. Rovelli, Class. Quantum Gravity 26, 245009 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  48. H. Sahlmann, Phys. Rev. D 84, 044049 (2011)

    Article  ADS  Google Scholar 

  49. S. Kloster, J. Brannlund, A. DeBenedictis, Class. Quantum Gravity 25, 065008 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  50. R. Bousso, J. High Energy Phys. 07, 004 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Ashtekar, E. Wilson-Ewing, Phys. Rev. D 78, 064047 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  52. J.F. Barbero G, J. Lewandowski, E.J.S. Villaseñor, Phys. Rev. D 80, 044016 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kei-ichi Maeda for critical reading and useful comments. We would also like to acknowledge Tomohiro Harada for valuable discussions and continuous encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomo Tanaka.

Appendix:  The Laplace transformation

Appendix:  The Laplace transformation

We introduce the Laplace transformation of N(a) by

$$P(L) := \int^{\infty}_{0} N(a) e^{-La} da, $$

where a=A/4πγ. Integrating (31) over a from 0 to ∞ we get one exact equation:

$$P(L) = \frac{1}{L (1 -G(L) )}, $$

where

with \(\tilde{a}_{x}(n,s,t)=a_{x}(n,s,t)/4\pi\gamma\) and \(\tilde{a}_{y}(n,s,t) =a_{y}(n,\allowbreak s,t)/4\pi\gamma\). In order to obtain N(a), we must perform the inverse Laplace transformation of P(L). We use the well-known fact that N(a) is determined by the poles of P(L). We find

$$N(a) = \sum_{L_i, \mathrm{Re}(L_i)>0} \mathrm{res}_{L_i} e^{L_ia} + \mbox{subleading terms}. $$

This is the form (21) which was used in Sect. 3. Now we search zeros L i which satisfy G(L i )−1=0.

We find that the only one real zero is given by

$$L_0 = 2.91673 \ldots=: \tilde{\gamma}_M. $$

Near this zero, the function P(L) behaves as

$$P(L) \approx\frac{C_M}{L-\tilde{\gamma}_M}, $$

where

$$C_M = -\frac{1}{\tilde{\gamma}_M G'(\tilde{\gamma}_M)} = 0.215979 \ldots. $$

The leading behavior for large a is given by

(A.1)

where \(\gamma_{M}=\tilde{\gamma}_{M}/\pi(=0.9284\ldots)\).

It is easy to prove that all complex zeros L i (i=1,2,…), i.e., the complex poles of P(L i ), with no vanishing imaginary part must have smaller real part than \(\tilde{\gamma}_{M}\) as follows: Since G(L i ) must be 1 on the poles, let us focus on the real part of G(L i ). Defining \(L_{i}:=L_{i}^{(1)}+i L_{i}^{(2)}\), we find that \(\mathrm{Re} [\mathrm{e}^{-L_{i}\tilde{a}_{x}} ]\)= \(\mathrm{e}^{-L_{i}^{(1)}\tilde{a}_{x}}\cos(L_{i}^{(2)} \tilde {a}_{x} )\). To satisfy G(L i )=1, \(L_{i}^{(1)}\) (i=1,2,…) must be smaller than \(\tilde{\gamma}_{M}\).

We show the values of the poles of P(L) for Re[L i ]>2 and |Im[L i ]|<100 in Table 1, which are solved numerically. In comparison with the leading relation (A.1), the complex zeros’ contribution to N(a) is exponentially smaller.

Table 1 The poles of P(L). We show the values of poles for Re[L i ]>2 and |Im[L i ]|<100

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Tamaki, T. Area spectrum of horizon and black hole entropy. Eur. Phys. J. C 73, 2314 (2013). https://doi.org/10.1140/epjc/s10052-013-2314-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2314-0

Keywords

Navigation