Skip to main content
Log in

Thermodynamic analysis of a Schwarzschild black hole fed by cosmic microwave background radiation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The analysis of black holes fed by the omnipresent Cosmic Microwave Background Radiation (CMBR) constitutes benchmark cases. The rate of energy and entropy variation of a Schwarzschild black hole fed by CMBR is analytically obtained. The entropy analysis revealed that there is a higher value of black hole’s critical mass than that obtained from an energy analysis, which is needed for its existence with high probability. At this minimum value of mass of the Schwarzschild black hole, the entropy generated due to its existence becomes positive. The black hole’s negentropy and the difference between its exit and inlet specific entropies are shown to more importantly correlate with its event horizon area than the black hole’s entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.W. Hawking, Black-hole explosions. Nature 248(5443), 30–31 (1974)

    Article  ADS  Google Scholar 

  2. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. P.C.W. Davies, S.A. Fulling, W.G. Unruh, Energy–momentum tensor near evaporating black-hole. Phys. Rev. D 13(10), 2720–2723 (1976)

    Article  ADS  Google Scholar 

  4. W.G. Unruh, Experimental black-hole evaporation. Phys. Rev. Lett. 46(21), 1351–1353 (1981)

    Article  ADS  Google Scholar 

  5. R. Schützhold, W.G. Unruh, Gravity wave analogues of black holes. Phys. Rev. D 66(4), 044019 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Weinfurtner, E.W. Tedford, M.C.J. Penrice, W.G. Unruh, G.A. Lawrence, Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106(2), 021302 (2011)

    Article  ADS  Google Scholar 

  7. S. Gao, R.M. Wald, “Physical process version” of the first law and the generalized second law for charged and rotating black holes. Phys. Rev. D 64(8), 084020 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  8. J.D. Bekenstein, How does the entropy/information bound work? Found. Phys. 35(11), 1805–1823 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. L. Susskind, The world as a hologram. J. Math. Phys. 36(11), 6377–6396 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. T. Jacobson, Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75(7), 1260–1263 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. F. Hammad, Thermodynamics of black holes from an entropy functional: an other approach using generalized elasticity. Int. J. Theor. Phys. 49(5), 1055–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Mitra, Area law for black hole entropy in the SU(2) quantum geometry approach. Phys. Rev. D 85(1), 104025 (2012)

    Article  ADS  Google Scholar 

  13. H. Chung, Hawking radiation and entropy from horizon degrees of freedom. Nucl. Phys. B 858(2), 214–231 (2012)

    Article  ADS  MATH  Google Scholar 

  14. F. Porcelli, G. Scibona, On the black hole’s thermodynamics and the entropic origin of gravity. Eur. Phys. J. Plus 127(1), 1 (2012)

    Article  Google Scholar 

  15. J.D. Bekenstein, Black holes and information theory. Contemp. Phys. 45(1), 31–43 (2003)

    Article  ADS  Google Scholar 

  16. M. Rabinowitz, Black hole radiation and volume statistical entropy. Int. J. Theor. Phys. 45(5), 877–884 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. G.W. Gibbons, M.J. Perry, Black holes and thermal Green functions. Proc. R. Soc., Math. Phys. Eng. Sci. 358(1695), 467–494 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Saida, The generalized second law and the black hole evaporation in an empty space as a nonequilibrium process. Class. Quantum Gravity 23(22), 6227–6243 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. H. Saida, Black hole evaporation in a heat bath as a nonequilibrium process and its final fate. Class. Quantum Gravity 24(3), 691–722 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142(1), 419–421 (1965)

    Article  ADS  Google Scholar 

  22. T. Hatano, S.-i. Sasa, Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86(16), 3463–3466 (2001)

    Article  ADS  Google Scholar 

  23. S.P. Mahulikar, H. Herwig, Exact solution for energy analysis of Schwarzschild black-hole fed by CMBR. Astrophys. Space Sci. 341(2), 417–420 (2012)

    Article  ADS  Google Scholar 

  24. H. Saida, Two-temperature steady-state thermodynamics for a radiation field. Physica A: Stat. Mech. Appl. 356(2–4), 481–508 (2005)

    Article  ADS  Google Scholar 

  25. M. Rabinowitz, Little black holes: dark matter and ball lightning. Astrophys. Space Sci. 262(4), 391–410 (1999)

    Article  ADS  MATH  Google Scholar 

  26. D.J. Fixsen, The temperature of the cosmic microwave background. Astrophys. J. 707(2), 916–920 (2009)

    Article  ADS  Google Scholar 

  27. S. Frautschi, Entropy in an expanding universe. Science 217(4560), 593–599 (1982)

    Article  ADS  Google Scholar 

  28. S.A. Balbus, Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555–597 (2003)

    Article  ADS  Google Scholar 

  29. W.H. Zurek, Entropy evaporated by a black hole. Phys. Rev. Lett. 49(23), 1683–1686 (1982)

    Article  ADS  Google Scholar 

  30. J.D. Bekenstein, Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9(12), 3292–3300 (1974)

    Article  ADS  Google Scholar 

  31. A. Ore, Entropy of radiation. Phys. Rev. 98(5), 887–888 (1955)

    Article  ADS  Google Scholar 

  32. R. Swenson, Emergent attractors and the law of maximum-entropy production: foundations to a theory of general evolution. Syst. Res. Behav. Sci. 6(3), 187–197 (1989)

    Article  Google Scholar 

  33. D.J. Evans, D.J. Searles, Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50(2), 1645–1648 (1994)

    Article  ADS  Google Scholar 

  34. S.P. Mahulikar, H. Herwig, Exact thermodynamic principles for dynamic order existence and evolution in chaos. Chaos Solitons Fractals 41(4), 1939–1948 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors thank the German Research Foundation’s (DFG) Mercator Professorship programme for sponsoring this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shripad P. Mahulikar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahulikar, S.P., Herwig, H. Thermodynamic analysis of a Schwarzschild black hole fed by cosmic microwave background radiation. Eur. Phys. J. C 73, 2292 (2013). https://doi.org/10.1140/epjc/s10052-013-2292-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2292-2

Keywords

Navigation