Skip to main content
Log in

Modified holographic Ricci dark energy coupled to interacting dark matter and a non-interacting baryonic component

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We examine a Friedmann–Robertson–Walker universe filled with interacting dark matter, modified holographic Ricci dark energy (MHRDE), and a decoupled baryonic component. The estimations of the cosmic parameters with Hubble data lead to an age of the universe of 13.17 Gyr and show that the MHRDE is free from the cosmic-age problem at low redshift (0≤z≤2) in contrast to holographic Ricci dark energy (HRDE) case. We constrain the parameters with the Union2 data set and contrast with the Hubble data. We also study the behavior of dark energy at early times by taking into account the severe bounds found at recombination era and/or at big bang nucleosynthesis. The inclusion of a non-interacting baryonic matter forces that the amount of dark energy at \(z_{t} \sim\mathcal{O}(1)\) changes abruptly implying that Ω x (z≃1100)=0.03, so the bounds reported by the forecast of Planck and CMBPol experiments are more favored for the MHRDE model than in the case of HRDE cutoff. For the former model, we also find that at high redshift the fraction of dark energy varies from 0.006 to 0.002, then the amount of Ω x at the big bang nucleosynthesis era does not disturb the observed helium abundance in the universe provided that the bound Ω x (z≃1010)<0.21 is hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. ’t Hooft, arXiv:gr-qc/9310026

  2. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. W. Fischler, L. Susskind, arXiv:hep-th/9806039

  4. R. Bousso, Rev. Mod. Phys. 74, 825–874 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  7. M. Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  8. E. Elizalde, S. Nojiri, S.D. Odintsov, P. Wang, Phys. Rev. D 71, 103504 (2005)

    Article  ADS  Google Scholar 

  9. F. Gao, Q. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  10. L.N. Granda, A. Oliveros, Phys. Lett. B 671, 199–202 (2009)

    Article  ADS  Google Scholar 

  11. R.G. Cai, B. Hu, Y. Zhang, Commun. Theor. Phys. 51, 954 (2009)

    Article  ADS  MATH  Google Scholar 

  12. S. del Campo, J.C. Fabris, R. Herrera, W. Zimdahl, arXiv:1103.3441v2

  13. I. Durán, D. Pavón, Phys. Rev. D 83, 023504 (2011)

    Article  ADS  Google Scholar 

  14. L.P. Chimento, M.G. Richarte, Phys. Rev. D 84, 123507 (2011)

    Article  ADS  Google Scholar 

  15. L.P. Chimento, M.G. Richarte, Phys. Rev. D 85, 127301 (2012)

    Article  ADS  Google Scholar 

  16. A.G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  17. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  18. S. Perlmutter et al. (The Supernova Cosmology Project), Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  19. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  20. D.N. Spergel et al., astro-ph/0603449

  21. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  22. E. Komatsu, et al. (WMAP Collaboration), arXiv:0803.0547

  23. X. Zhang, Phys. Rev. D 79, 103509 (2009)

    Article  ADS  Google Scholar 

  24. L. Xu, Y. Wang, J. Cosmol. Astropart. Phys. 06, 002 (2010)

    Article  ADS  Google Scholar 

  25. M. Suwa, T. Nihei, Phys. Rev. D 81, 023519 (2010)

    Article  ADS  Google Scholar 

  26. L.P. Chimento, M. Forte, M.G. Richarte, arXiv:1106.0781

  27. M.I. Forte, M.G. Richarte, arXiv:1206.1073

  28. L.P. Chimento, M.I. Forte, M.G. Richarte, arXiv:1206.0179

  29. Y. Wang, L. Xu, Phys. Rev. D 81, 083523 (2010)

    Article  ADS  Google Scholar 

  30. D. Clowe et al., Astrophys. J. Lett. 648, L109 (2006)

    Article  ADS  Google Scholar 

  31. M. Bradac et al., Astrophys. J. 687, 959 (2008)

    Article  ADS  Google Scholar 

  32. R.W. Schnee, arXiv:1101.5205

  33. L.P. Chimento, Phys. Rev. D 81, 043525 (2010)

    Article  ADS  Google Scholar 

  34. L.P. Chimento, M. Forte, G.M. Kremer, Gen. Relativ. Gravit. 41, 1125 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. L. Zhang, J. Cui, J. Zhang, X. Zhang, Int. J. Mod. Phys. D 19, 21 (2010). arXiv:0911.2838 [astro-ph.CO]

    Article  ADS  MATH  Google Scholar 

  36. H. Wei, R.G. Cai, Phys. Lett. B 655, 1 (2007). arXiv:0707.4526 [gr-qc]

    Article  ADS  Google Scholar 

  37. M. Quartin, M.O. Calvao, S.E. Joras, R.R.R. Reis, I. Waga, J. Cosmol. Astropart. Phys. 0805, 007 (2008)

    Article  ADS  Google Scholar 

  38. K. Karwan, J. Cosmol. Astropart. Phys. 0805, 011 (2008)

    Article  ADS  Google Scholar 

  39. R.H. Cyburt, B.D. Fields, K.A. Olive, E. Skillman, Astropart. Phys. 23, 313 (2005)

    Article  ADS  Google Scholar 

  40. E. Calabrese, D. Huterer, E.V. Linder, A. Melchiorri, L. Pagano, Phys. Rev. D 83, 123504 (2011)

    Article  ADS  Google Scholar 

  41. E. Calabrese, R. de Putter, D. Huterer, E.V. Linder, A. Melchiorri, Phys. Rev. D 83, 023011 (2011)

    Article  ADS  Google Scholar 

  42. C.L. Reichardt, R. de Putter, O. Zahn, Z. Hou, arXiv:1110.5328

  43. E. Calabrese, E. Menegoni, C.J.A.P. Martins, A. Melchiorri, G. Rocha, Phys. Rev. D 84, 023518 (2011)

    Article  ADS  Google Scholar 

  44. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005). astro-ph/0412269

    Article  ADS  Google Scholar 

  45. D. Stern et al., arXiv:0907.3149

  46. L. Samushia, B. Ratra, Astrophys. J. 650, L5–L8 (2006)

    Article  ADS  Google Scholar 

  47. O. Farooq, D. Mania, B. Ratra, arXiv:1211.4253

  48. W.H. Press et al., Numerical Recipes in C (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  49. A.G. Riess et al., Astrophys. J. 699, 539 (2009). arXiv:0905.0695

    Article  ADS  Google Scholar 

  50. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  51. D.S. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford University Press, London, 2006)

    MATH  Google Scholar 

  52. E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO]

  53. H.M. Courtois, R. Brent Tully, arXiv:1202.3832v1

  54. L.P. Chimento, M. Forte, R. Lazkoz, M.G. Richarte, Phys. Rev. D 79, 043502 (2009)

    Article  ADS  Google Scholar 

  55. N. Jarosik, C.L. Bennett, J. Dunkley, B. Gold, M.R. Greason, M. Halpern, R.S. Hill, G. Hinshaw et al., Astrophys. J. Suppl. Ser. 192, 14 (2011). arXiv:1001.4744 [astro-ph.CO]

    Article  ADS  Google Scholar 

  56. J. Dunlop, in The Most Distant Radio Galaxies, ed. by J.J.A. Rottgering, P. Best, M.D. Lehnert (Kluwer Academic, Dordrecht, 1999), p. 71

    Google Scholar 

  57. J. Dunlop, J. Peacock, H. Spinrad, A. Dey, R. Jimenez, D. Stern, R. Windhorst, Nature 381, 581 (1996)

    Article  ADS  Google Scholar 

  58. L.P. Chimento, M.G. Richarte, Phys. Rev. D 86, 103501 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for making useful suggestions which helped improve the article. L.P.C. thanks the University of Buenos Aires for their support under Project No. 20020100100147 and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through the research Project PIP 114-200801-00328. M.G.R. is partially supported by Postdoctoral Fellowship Programme of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín G. Richarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimento, L.P., Forte, M. & Richarte, M.G. Modified holographic Ricci dark energy coupled to interacting dark matter and a non-interacting baryonic component. Eur. Phys. J. C 73, 2285 (2013). https://doi.org/10.1140/epjc/s10052-013-2285-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2285-1

Keywords

Navigation