Skip to main content
Log in

Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon–meson pairs such as ΛK and ΣK, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large-x region, the perturbative contributions are more significant in the small-x region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of x. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02<x<0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 14, 133 (2000)

    ADS  Google Scholar 

  2. H.L. Lai et al., Eur. Phys. J. C 12, 375 (2000)

    Article  ADS  Google Scholar 

  3. M. Gluck, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)

    Article  ADS  Google Scholar 

  4. S.I. Alekhin, Phys. Rev. D 63, 094022 (2001)

    Article  ADS  Google Scholar 

  5. S.E. Kuhn, C.P. Chen, E. Leader, Prog. Part. Nucl. Phys. 73, 1 (2009)

    Article  ADS  Google Scholar 

  6. M. Burkardt, C.A. Miller, W.D. Nowak, Rep. Prog. Phys. 73, 016201 (2010)

    Article  ADS  Google Scholar 

  7. A. Kusina, T. Stavreva, S. Berge, F. Olness, I. Schienbein et al., (2012). arXiv:1203.1290 [hep-ph]

  8. A.I. Signal, A.W. Thomas, Phys. Lett. B 191, 205 (1987)

    Article  ADS  Google Scholar 

  9. S. Davidson, S. Forte, P. Gambino, N. Rius, A. Strumia, J. High Energy Phys. 0202, 037 (2002)

    Article  ADS  Google Scholar 

  10. F.G. Cao, A.I. Signal, Phys. Lett. B 559, 229 (2003)

    Article  ADS  Google Scholar 

  11. G.P. Zeller et al., Phys. Rev. Lett. 88, 091802 (2002)

    Article  ADS  Google Scholar 

  12. J. Beringer et al., Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  13. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  14. H.L. Lai et al., J. High Energy Phys. 04, 089 (2007)

    Article  ADS  Google Scholar 

  15. H.L. Lai et al., Phys. Rev. D 82, 074024 (2010)

    Article  ADS  Google Scholar 

  16. P. Jimenez-Delgado, E. Reya, Phys. Rev. D 79, 074023 (2009)

    Article  ADS  Google Scholar 

  17. S. Alekhin, J. Blumlein, S. Klein, S. Moch, Phys. Rev. D 81, 014032 (2010)

    Article  ADS  Google Scholar 

  18. S. Alekhin, J. Blumlein, S. Moch, Phys. Lett. B 697, 127 (2011)

    Article  ADS  Google Scholar 

  19. V. Barone, C. Pascaud, F. Zomer, Eur. Phys. J. C 12, 2 (2000)

    Article  Google Scholar 

  20. V. Barone, C. Pascaud, B. Portheault, F. Zomer, J. High Energy Phys. 01, 006 (2006)

    Article  ADS  Google Scholar 

  21. R. Ball et al., Nucl. Phys. B 823, 195 (2009)

    Article  ADS  MATH  Google Scholar 

  22. R. Ball et al., Nucl. Phys. B 849, 296 (2011)

    Article  ADS  Google Scholar 

  23. R. Ball et al. arXiv:1207.1303 [hep-ph]

  24. P. Jimenez-Delgado, Phys. Lett. B 689, 177 (2010)

    Article  ADS  Google Scholar 

  25. S. Alekhin, S. Kulagin, R. Petti, Phys. Lett. B 675, 433 (2009)

    Article  ADS  Google Scholar 

  26. F.G. Cao, AIP Conf. Proc. 1418, 91 (2011)

    Article  ADS  Google Scholar 

  27. A.W. Thomas, Phys. Lett. B 126, 97 (1983)

    Article  ADS  Google Scholar 

  28. M. Burkardt, B. Warr, Phys. Rev. D 45, 958 (1992)

    Article  ADS  Google Scholar 

  29. S.J. Brodsky, B.Q. Ma, Phys. Lett. B 381, 317 (1996)

    Article  ADS  Google Scholar 

  30. H. Holtmann, A. Szczurek, J. Speth, Nucl. Phys. A 596, 631 (1996)

    Article  ADS  Google Scholar 

  31. F.G. Cao, A.I. Signal, Phys. Rev. D 60, 074021 (1999)

    Article  ADS  Google Scholar 

  32. W. Melnitchouk, M. Malheiro, Phys. Lett. B 451, 224 (1999)

    Article  ADS  Google Scholar 

  33. A.I. Signal, F.G. Cao, Nucl. Phys. A 680, 43 (2000)

    Article  ADS  Google Scholar 

  34. H.R. Christiansen, J. Magnin, Phys. Lett. B 445, 8 (1998)

    Article  ADS  Google Scholar 

  35. F.G. Cao, A.I. Signal, Nucl. Phys. B, Proc. Suppl. 128, 30 (2004)

    Article  ADS  Google Scholar 

  36. J. Alwall, G. Ingelman, Phys. Rev. D 70, 111505 (2004)

    Article  ADS  Google Scholar 

  37. M. Wakamatsu, Phys. Rev. D 71, 057504 (2005)

    Article  ADS  Google Scholar 

  38. J. Alwall, G. Ingelman, Phys. Rev. D 71, 094015 (2005)

    Article  ADS  Google Scholar 

  39. F.X. Wei, B.S. Zou, Phys. Lett. B 660, 501 (2008)

    Article  ADS  Google Scholar 

  40. M. Diehl, T. Feldmann, P. Kroll, Phys. Rev. D 77, 033006 (2008)

    Article  ADS  Google Scholar 

  41. M. Traini, Phys. Lett. B 707, 523 (2012)

    Article  ADS  Google Scholar 

  42. S. Catani, D. de Florian, G. Rodrigo, W. Vogelsang, Phys. Rev. Lett. 93, 152003 (2004)

    Article  ADS  Google Scholar 

  43. S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. S. Catani, F. Hautmann, Nucl. Phys. B 427, 475 (1994)

    Article  ADS  Google Scholar 

  45. A.I. Signal, A.W. Thomas, Phys. Rev. D 40, 2832 (1989)

    Article  ADS  Google Scholar 

  46. A.W. Schreiber, A.I. Signal, A.W. Thomas, Phys. Rev. D 44, 2653 (1991)

    Article  ADS  Google Scholar 

  47. C. Boros, A.W. Thomas, Phys. Rev. D 60, 074017 (1999)

    Article  ADS  Google Scholar 

  48. F.G. Cao, A. Signal, Eur. Phys. J. C 21, 105 (2001)

    Article  ADS  Google Scholar 

  49. M. Miyama, S. Kumano, Comput. Phys. Commun. 94, 185 (1996)

    Article  ADS  Google Scholar 

  50. G. Aad et al., Phys. Rev. Lett. 109, 012001 (2012)

    Article  ADS  Google Scholar 

  51. J.T. Londergan, A.W. Thomas, Phys. Rev. D 67, 111901 (2003)

    Article  ADS  Google Scholar 

  52. S.A. Kulagin, Phys. Rev. D 67, 091301 (2003)

    Article  ADS  Google Scholar 

  53. S. Kretzer et al., Phys. Rev. Lett. 93, 041802 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.-G. thanks D. Sutherland for discussion on the Mellin transformation. G.-Q. Feng is very grateful to Professor B.-S. Zou for valuable discussions. This work is supported by the National Natural Science Foundation of China (Project Nos. 11035006, 10675022, 10975018, and 11175020), the Chinese Academy of Sciences (Project No. KJCX2-EW-N01), and the Fundamental Research Funds for the Central Universities in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Qiu Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, GQ., Cao, FG., Guo, XH. et al. Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon. Eur. Phys. J. C 72, 2250 (2012). https://doi.org/10.1140/epjc/s10052-012-2250-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2250-4

Keywords

Navigation