Skip to main content
Log in

Preliminary study of the scattering length from lattice QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The s-wave kaon–antikaon () scattering length is studied by lattice QCD using pion masses m π =330–466 MeV. Through wall sources without gauge fixing, we calculate four-point functions in the I=1 channel with the “Asqtad”-improved staggered fermion formulation, and observe an attractive signal, which is consistent with pioneering lattice studies on potential. Extrapolating the scattering length to the physical point, we obtain , where the first error is statistical and the second is systematic. These simulations are conducted with MILC gauge configurations at lattice spacing a≈0.15 fm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Our phase conventions for pseudoscalar mesons are different from those in Ref. [1].

  2. The errors for vacuum amplitudes should be roughly independent of t, and grow exponentially as e^2m_Kt in the ratio R V . While for the rectangular diagram R s , it increases as \(\displaystyle e^{m_{s\bar{s}} t}\), where \(m_{s\bar{s}}\) is a fictitious meson with two valence quarks with mass about m s (see Ref. [43] for the calculation of \(m_{s\bar{s}}\)). Thus, the reliable calculations of these terms are beyond the scope of this paper since it requires a substantial amount of computing resources.

  3. Zhi-Hui Guo give the following formula to me for fitting our lattice data. We especially thank him. Without his kind help, we could not have finished this work properly. Nevertheless, in this work, we use f π =132 MeV instead of 92 MeV as in Guo’s original formula.

References

  1. J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D 59, 074001 (1999). arXiv:hep-ph/9804209

    Article  ADS  Google Scholar 

  2. P. Winter et al., Phys. Lett. B 635, 23 (2006). arXiv:hep-ex/0602030

    Article  ADS  Google Scholar 

  3. Y. Maeda et al. (The ANKE Collaboration), Phys. Rev. C 77, 015204 (2008). arXiv:0710.1755 [nucl-ex]

    Article  ADS  Google Scholar 

  4. A. Dzyuba et al., Phys. Lett. B 668, 315 (2008). arXiv:0807.0524 [nucl-th]

    Article  ADS  Google Scholar 

  5. Y. Maeda et al., Phys. Rev. C 79, 018201 (2009). arXiv:0811.4303 [nucl-ex]

    Article  ADS  Google Scholar 

  6. M. Silarski et al. (COSY-11 Collaboration), Phys. Rev. C 80, 045202 (2009). arXiv:0909.3974 [hep-ph]

    Article  ADS  Google Scholar 

  7. J.J. Xie, C. Wilkin, Phys. Rev. C 82, 025210 (2010). arXiv:1005.2957 [nucl-th]

    Article  ADS  Google Scholar 

  8. B. Lorentz et al., J. Phys. Conf. Ser. 295, 012146 (2011)

    Article  ADS  Google Scholar 

  9. M. Silarski, Int. J. Mod. Phys. A 26, 539 (2011). arXiv:1008.3620 [hep-ph]

    Article  ADS  Google Scholar 

  10. N.N. Wong, A.N. Kamal, Phys. Rev. D 11, 1896 (1975)

    Article  ADS  Google Scholar 

  11. F. Guerrero, J.A. Oller, Nucl. Phys. B 537, 459 (1999). arXiv:hep-ph/9805334

    Article  ADS  Google Scholar 

  12. R.W. Griffith, Phys. Rev. 176, 1705 (1968)

    Article  ADS  Google Scholar 

  13. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997)

    Article  ADS  Google Scholar 

  14. J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999). hep-ph/9809337

    Article  ADS  Google Scholar 

  15. M. Doring, U.G. Meissner, E. Oset, A. Rusetsky, Eur. Phys. J. A 47, 139 (2011). arXiv:1107.3988 [hep-lat]

    Article  ADS  Google Scholar 

  16. A. Gomez Nicola, J.R. Pelaez, Phys. Rev. D 65, 054009 (2002). arXiv:hep-ph/0109056

    Article  ADS  Google Scholar 

  17. A. Mihály, Studies of meson–meson interactions within lattice QCD. Ph.D. thesis, Lajos Kossuth University, Debrecen (1998)

  18. A. Mihaly, H.R. Fiebig, H. Markum, K. Rabitsch, Heavy Ion Phys. 9, 349 (1999)

    Google Scholar 

  19. S.R. Beane et al., Phys. Rev. D 77, 094507 (2008). arXiv:0709.1169 [hep-lat]

    Article  ADS  Google Scholar 

  20. Z. Fu, Phys. Rev. D 85, 074501 (2012). arXiv:1110.1422 [hep-lat]

    Article  ADS  Google Scholar 

  21. Z. Fu, J. High Energy Phys. 1201, 017 (2012). arXiv:1110.5975 [hep-lat]

    Article  ADS  Google Scholar 

  22. Z. Fu, Phys. Rev. D 85, 014506 (2012). arXiv:1110.0319 [hep-lat]

    Article  ADS  Google Scholar 

  23. Z. Fu, Commun. Theor. Phys. 57, 78 (2012). arXiv:1110.3918 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  24. Z. Fu, J. High Energy Phys. 1207, 142 (2012). arXiv:1202.5834 [hep-lat]

    Article  ADS  Google Scholar 

  25. M. Luscher, Nucl. Phys. B 354, 531 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Lellouch, M. Luscher, Commun. Math. Phys. 219, 31 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  28. K. Orginos, D. Toussaint (MILC Collaboration), Phys. Rev. D 59, 014501 (1998)

    Article  Google Scholar 

  29. K. Orginos, D. Toussaint, R.L. Sugar (MILC Collaboration) Phys. Rev. D 60, 054503 (1999)

    Article  ADS  Google Scholar 

  30. C. Bernard et al., Phys. Rev. D 83, 034503 (2011)

    Article  ADS  Google Scholar 

  31. A. Bazavov et al., Rev. Mod. Phys. 82, 1349 (2010)

    Article  ADS  Google Scholar 

  32. Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, A. Ukawa, Phys. Rev. Lett. 71, 2387 (1993)

    Article  ADS  Google Scholar 

  33. M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino, A. Ukawa, Phys. Rev. D 52, 3003 (1994)

    Article  ADS  Google Scholar 

  34. Z.H. Guo, J.A. Oller, Phys. Rev. D 84, 034005 (2011)

    Article  ADS  Google Scholar 

  35. S.R. Sharpe, R. Gupta, G.W. Kilcup, Nucl. Phys. B 383, 309 (1992)

    Article  ADS  Google Scholar 

  36. J. Nagata, S. Muroya, A. Nakamura, Phys. Rev. C 80, 045203 (2009)

    Article  ADS  Google Scholar 

  37. T. Yamazaki et al., Phys. Rev. D 70, 074513 (2004)

    Article  ADS  Google Scholar 

  38. D. Barkai, K.J.M. Moriarty, C. Rebbi, Phys. Lett. B 156, 385 (1985)

    Article  ADS  Google Scholar 

  39. A. Mihaly, H.R. Fiebig, H. Markum, K. Rabitsch, Phys. Rev. D 55, 3077 (1997)

    Article  ADS  Google Scholar 

  40. Z. Fu, Chin. Phys. Lett. 28(8), 081202 (2011)

    Article  ADS  Google Scholar 

  41. Z. Fu, Chin. Phys. C 37, 1079 (2011)

    Article  ADS  Google Scholar 

  42. G.P. Lepage, in Proceedings of TASI’89 Summer School, ed. by T. DeGrand, D. Toussaint (World Scientific, Singapore, 1990), p. 97

    Google Scholar 

  43. C.W. Bernard et al., Phys. Rev. D 64, 054506 (2001). arXiv:hep-lat/0104002

    Article  ADS  Google Scholar 

  44. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  45. X. Feng, K. Jansen, D.B. Renner, Phys. Lett. B 684, 268 (2010). arXiv:0909.3255 [hep-lat]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Fundamental Research Funds for the Central Universities (2010SCU23002). We thank the MILC Collaboration for using their lattice ensemble. We should thank Eulogio Oset for encouraging and constructive comments, and Zhi-Hui Guo and Hou Qing for their kind help. The computations for this work were done at AMAX, CENTOS and HP workstations in the Institute of Nuclear Science & Technology, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwen Fu.

Appendices

Appendix A: I=1 scattering amplitudes in terms of quark propagators

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)
(A.6)
(A.7)
(A.8)
(A.9)
(A.10)
(A.11)
(A.12)

Appendix B: The analytic expression of s-wave scattering length for the isospin I=1 channel

In the isospin limit, both isospin amplitudes in can be described by two independent amplitudes T ch (the amplitude for the processes K + K K + K ) and T neu (that for ) [1, 11, 16]. Z.H. Guo and J.A. Oller derived two isospin amplitudes only in terms of T neu [34]. Here we follow the notation and conventions in [34], since the chiral scale μ dependence in amplitude is canceled by the loops and the low-energy constants (LECs) [34].

These amplitudes can be decomposed into partial waves t l (s) according to

$$T(s,t,u)=16\pi \sum_l (2l+1) t_l(s) P_l(\cos\theta) , $$

where l is total angular momentum, θ denotes scattering angle in the center-of-mass system. In the elastic region, the partial wave amplitude t l (s) can be parameterized by real phase shifts δ l (s),

$$t_l^I(s) = \sqrt{\frac{s}{s-4m_K^2}} \frac{1}{2i} \bigl\{ e^{2i\delta_l^I(s)}-1 \bigr\} . $$

Its real part can be expanded at threshold (namely, \(s=4m_{K}^{2}, t=0, u=0\)) in terms of the scattering lengths (\(a_{l}^{I=1}\)) and effective ranges (\(b_{l}^{I=1}\)),

$${\mathit{Re}}\,t_l^I(s) = \frac{\sqrt{s}}{2} \, q^{2l} \bigl\{ a_l^{I=1} + b_l^{I=1} q^2 + \mathcal{O} \bigl(q^4 \bigr) \bigr\} , $$

for the center-of-mass three-momentum of the kaons q. The s-wave scattering length is linked to the real part of the amplitude at threshold by

The one-loop order analytic expressions of scattering amplitudes in the isospin limit can be found in Ref. [34], however, no analytic formulas for s-wave scattering lengths were explicitly provided. We, therefore, will present it for the isospin I=1 channel. To this end, we first expand the scattering amplitude at threshold, namely,Footnote 3

(B.13)

where are low-energy constants defined in Ref. [44] at the chiral symmetry breaking scale μ. The loop function is given in Ref. [44], namely,

(B.14)

with

$$\nu = \sqrt{ \bigl[4m_K^2 - (m_\pi + m_\eta )^2 \bigr] \bigl[4m_K^2 - (m_\pi - m_\eta )^2 \bigr] }. $$

By plugging the leading order relation \(m_{\eta}^{2} = (4m_{K}^{2}-m_{\pi}^{2})/3\) [34] we can simplify the above formula as

(B.15)

The scattering length can be written in compact form,

(B.16)

where is for the known functions at NLO, which clearly depend on the chiral scale μ with chiral logarithm terms,

(B.17)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z. Preliminary study of the scattering length from lattice QCD. Eur. Phys. J. C 72, 2159 (2012). https://doi.org/10.1140/epjc/s10052-012-2159-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2159-y

Keywords

Navigation