Skip to main content
Log in

Expansion by regions: revealing potential and Glauber regions automatically

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

When performing asymptotic expansions using the strategy of expansion by regions, it is a non-trivial task to find the relevant regions. The recently published Mathematica code asy.m automates this task, but it has not been able to detect potential regions in threshold expansions or Glauber regions. In this work we present an algorithm and its implementation in the update asy2.m which also reveals potential and Glauber regions automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The function UF[] from UF.m [16] is called with three arguments: The list of loop momenta, the list of denominators of the propagators and a list of replacement rules for all kinematic invariants. The output is a list with the following entries: the function \(\mathcal {U}\), the function \(\mathcal {F}\) and the number of loops. In order to obtain \(\mathcal {U}\) and \(\mathcal {F}\) with the correct sign, denominators have to be specified with the opposite sign as in (2), i.e. corresponding to a negative imaginary part −i0: UF[{k1,k2,...}, {-E1,-E2,...}, {replacement rules}].

  2. See e.g. the discussion in Sect. 3.4 of [17].

  3. See also (36), (37) and footnote 5 (p. 13) for a general proof.

  4. The name of the command refers to its application to parametric integrals contributing to Wilson loops.

  5. To see this, multiply the integrand of (36) by 1 in the form \(x_{j} \int_{0}^{\infty} \mbox {d}t \, e^{-t x_{j}}\), where x j is any of the integration parameters. Then, inside the t-integration, transform the integration variables as x i x i /t, i=1,…,N, and use the homogeneity relation (37) with λ=1/t. Finally evaluate the t-integration first, yielding \(\int_{0}^{\infty} \mbox {d}t \,\delta(\sum_{i=1}^{N} a_{i} x_{i} - t) = 1\), independent of the coefficients a i , as long as the linear combination is positive. The integral (36) is given by \(\int_{0}^{\infty}\cdots \int_{0}^{\infty} \mbox {d}x_{1}\cdots \mbox {d}x_{N} \, f(x_{1},\ldots,x_{N}) \, x_{j} \,e^{-x_{j}}\).

References

  1. K.G. Chetyrkin, Theor. Math. Phys. 75, 346 (1988) [Teor. Mat. Fiz. 75, 26 (1988)]

    Article  MathSciNet  Google Scholar 

  2. K.G. Chetyrkin, Theor. Math. Phys. 76, 809 (1988) [Teor. Mat. Fiz. 76, 207 (1988)]

    Article  MathSciNet  Google Scholar 

  3. S.G. Gorishny, Nucl. Phys. B 319, 633 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. V.A. Smirnov, Commun. Math. Phys. 134, 109 (1990)

    Article  ADS  MATH  Google Scholar 

  5. V.A. Smirnov, Mod. Phys. Lett. A 10, 1485 (1995)

    Article  ADS  Google Scholar 

  6. V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts in Modern Physics, vol. 177 (Springer, Berlin, 2002)

    MATH  Google Scholar 

  7. T. Seidensticker, arXiv:hep-ph/9905298

  8. R. Harlander, T. Seidensticker, M. Steinhauser, Phys. Lett. B 426, 125 (1998)

    Article  ADS  Google Scholar 

  9. M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998)

    Article  ADS  Google Scholar 

  10. V.A. Smirnov, E.R. Rakhmetov, Theor. Math. Phys. 120, 870 (1999) [Teor. Mat. Fiz. 120, 64 (1999)]

    Article  MATH  Google Scholar 

  11. V.A. Smirnov, Phys. Lett. B 465, 226 (1999)

    Article  ADS  Google Scholar 

  12. B. Jantzen, J. High Energy Phys. 12, 076 (2011)

    Article  ADS  Google Scholar 

  13. A.V. Smirnov, V.A. Smirnov, M. Tentyukov, Comput. Phys. Commun. 182, 790 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A.V. Smirnov, M.N. Tentyukov, Comput. Phys. Commun. 180, 735 (2009)

    Article  ADS  MATH  Google Scholar 

  15. A. Pak, A. Smirnov, Eur. Phys. J. C 71, 1626 (2011)

    Article  ADS  Google Scholar 

  16. A.V. Smirnov, http://science.sander.su/Tools-UF.htm

  17. V.A. Smirnov, Feynman Integral Calculus (Springer, Berlin, 2006)

    Google Scholar 

  18. http://www-ttp.particle.uni-karlsruhe.de/~asmirnov/Tools-Regions.htm

Download references

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich/Transregio 9 “Computergestützte Theoretische Teilchenphysik”. The work of A.S. and V.S. is also supported by the Russian Foundation for Basic Research through grant 11-02-01196. The authors thank M. Beneke and A. Pak for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Jantzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantzen, B., Smirnov, A.V. & Smirnov, V.A. Expansion by regions: revealing potential and Glauber regions automatically. Eur. Phys. J. C 72, 2139 (2012). https://doi.org/10.1140/epjc/s10052-012-2139-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2139-2

Keywords

Navigation