Skip to main content
Log in

Glueball masses and Regge trajectories for the QCD-inspired potential

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The bound state of two massive constituent gluons is studied in the potential approach. The relativistic quasi-classical wave equation with the QCD-inspired scalar potential is solved by the quasi-classical method in the complex plane. Glueball masses are calculated with the help of the universal mass formula. The hadron Regge trajectories are given by the complex non-linear function in the whole region of the invariant variable t. The Chew–Frautschi plot of the leading glueball trajectory, α P (t), has the properties of a t-channel Pomeron, which is dual to the glueball states in the s channel. The imaginary part of the Pomeron is also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E 18, 1 (2009). arXiv:0810.4453v1

    Article  ADS  Google Scholar 

  2. N. Boulanger, F. Buisseret, V. Mathieu, C. Semay, Eur. Phys. J. A 38, 317 (2008)

    Article  ADS  Google Scholar 

  3. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007)

    Article  ADS  Google Scholar 

  4. Y. Chen et al., Phys. Rev. D 73, 014516 (2006)

    Article  ADS  Google Scholar 

  5. V. Mathieu, F. Buisseret, C. Semay, Phys. Rev. D 77, 114022 (2008). arXiv:0802.0088

    Article  ADS  Google Scholar 

  6. V. Mathieu, C. Semay, B. Silvestre-Brac, Phys. Rev. D 77, 094009 (2008). arXiv:0803.0815

    Article  ADS  Google Scholar 

  7. V. Mathieu, C. Semay, B. Silvestre-Brac, Phys. Rev. D 74, 054002 (2006). arXiv:hep-ph/0605205

    Article  ADS  Google Scholar 

  8. V. Mathieu, C. Semay, B. Silvestre-Brac, Phys. Rev. D 77, 094009 (2008). arXiv:0810.4453v1

    Article  ADS  Google Scholar 

  9. F. Brau, C. Semay, Phys. Rev. D 72, 078501 (2005)

    Article  ADS  Google Scholar 

  10. A.B. Kaidalov, Yu.A. Simonov, Phys. Lett. B 636, 101 (2006). arXiv:hep-ph/0512151

    Article  ADS  Google Scholar 

  11. Yu.A. Simonov, Nucl. Phys. B 324, 67 (1989)

    Article  ADS  Google Scholar 

  12. H.G. Dosch, Yu.A. Simonov, Z. Phys. C 45, 147 (1989)

    Article  Google Scholar 

  13. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982)

    Article  ADS  Google Scholar 

  14. A.C. Aguilar, J. Papavassiliou, J. High Energy Phys. 0612, 012 (2006)

    Article  ADS  Google Scholar 

  15. A. Donnachie, H.G. Dosch, P.V. Landshoff, O. Nachtmann, Pomeron Physics and QCD (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  16. P.V. Landshoff, in The Total Cross-Section at the LHC. Lectures at School on QCD, Calabria, July 2007. arXiv:0709.0395

  17. J. Breitweg et al. (ZEUS Collaboration), Eur. Phys. J. C 1, 81 (1998)

    Article  ADS  Google Scholar 

  18. D. Aston et al., Nucl. Phys. B 209, 56 (1982)

    Article  ADS  Google Scholar 

  19. M. Derrick et al. (ZEUS Collaboration), Phys. Lett. B 293, 465 (1992)

    Article  ADS  Google Scholar 

  20. M. Derrick et al. (ZEUS Collaboration), DEZY 94-117 (1994)

  21. T. Ahmed et al. (H1 Collaboration), Phys. Lett. B 299, 374 (1993)

    Article  ADS  Google Scholar 

  22. T. Ahmed et al. (H1 Collaboration), DEZY 94-133 (1994)

  23. A. Donnachie, P.V. Landshoff, Phys. Lett. B 518, 63 (2001)

    Article  ADS  Google Scholar 

  24. A. Donnachie, P.V. Landshoff, Phys. Lett. B 470, 243 (1999)

    Article  ADS  Google Scholar 

  25. A. Donnachie, P.V. Landshoff, M/C-TH 99-16, DAMTP-1999-167

  26. R. Fiore, L.L. Jenkovszky, F. Paccanoni, A. Prokudin, Phys. Rev. D 68, 014005 (2003)

    Article  ADS  Google Scholar 

  27. A.A. Godizov, Phys. Rev. D 78, 034028 (2008). arXiv:0710.1793

    Article  ADS  Google Scholar 

  28. A.A. Godizov, V.A. Petrov, J. High Energy Phys. 0707, 083 (2007). arXiv:hep-th/0701121

    Article  ADS  Google Scholar 

  29. M.N. Sergeenko, Europhys. Lett. 89, 11001 (2010). arXiv:1107.1671v1. A Letter of Journal Exploring the Frontiers of Physics, EPL, Best of 2010, ISSN 0295-5075, p. 9

    Article  ADS  Google Scholar 

  30. M.N. Sergeenko, Rep. Belarus Natl. Acad. Sci. 55(5), 40 (2011)

    Google Scholar 

  31. W.S. Hou, C.S. Luo, G.G. Wong, Phys. Rev. D 64, 014028 (2001)

    Article  ADS  Google Scholar 

  32. H. Fritzsch, P. Minkowsky, Nuovo Cimento A 30, 393 (1975)

    Article  ADS  Google Scholar 

  33. J.F. Bolzan et al., Phys. Rev. Lett. 35, 419 (1975)

    Article  ADS  Google Scholar 

  34. P.G.O. Freund, Y. Nambu, Phys. Rev. Lett. 37, 1646 (1975)

    Google Scholar 

  35. B. Diekman, Phys. Rep. 159, 99 (1988)

    Article  ADS  Google Scholar 

  36. J.F. Donoghue, K. Johnson, B.A. Li, Phys. Lett. B 99, 416 (1981)

    Article  ADS  Google Scholar 

  37. B.S. Zou, Nucl. Phys. A 655, 41 (1999)

    Article  ADS  Google Scholar 

  38. D.V. Bugg, M.J. Peardon, B.S. Zou, Phys. Lett. B 486, 49 (2000). arXiv:hep-ph/0006179

    Article  ADS  Google Scholar 

  39. C.J. Morningstar, M.J. Peardon, Phys. Rev. D 60, 034509 (1999). arXiv:hep-lat/9901004

    Article  ADS  Google Scholar 

  40. Y. Chen et al., Phys. Rev. D 73, 014516 (2006). arXiv:hep-lat/0510074

    Article  ADS  Google Scholar 

  41. F.E. Low, Phys. Rev. D 12, 163 (1975)

    Article  ADS  Google Scholar 

  42. S. Nussinov, Phys. Rev. Lett. 34, 1286 (1975)

    Article  ADS  Google Scholar 

  43. L.N. Lipatov, Sov. Phys. JETP 63, 904 (1986)

    Google Scholar 

  44. Y.Y. Balitski, L.N. Lipatov, Yad. Fiz. 28, 1597 (1978)

    Google Scholar 

  45. R. Brower, J. Polchinski, M. Strassler, C.-I. Tan, arXiv:hep-th/0603115

  46. S. Erhan, P.E. Schlein, Eur. Phys. J. C 33, 325 (2004)

    Article  ADS  Google Scholar 

  47. S. Erhan, P.E. Schlein, Phys. Lett. B 481, 177 (2000)

    Article  ADS  Google Scholar 

  48. S. Erhan, P.E. Schlein, Phys. Lett. B 427, 389 (1998)

    Article  ADS  Google Scholar 

  49. A.B. Kaidalov, Yu.A. Simonov, Phys. Lett. B 477, 163 (2000)

    Article  ADS  Google Scholar 

  50. A.V. Dubin, A.B. Kaidalov, Yu.A. Simonov, Yad. Fiz. 63, 1428 (2000)

    Google Scholar 

  51. J.D. Bjorken, E. Paschos, Phys. Rev. 185, 1975 (1969)

    Article  ADS  Google Scholar 

  52. A. Tang, J.W. Norbury, Phys. Rev. D 62, 016006 (2000). arXiv:hep-ph/0004078

    Article  ADS  Google Scholar 

  53. W.K. Tang, Phys. Rev. D 48, 2019 (1993)

    Article  ADS  Google Scholar 

  54. A. Brandt, S. Erhan, A. Kuzucu, D. Lynn, M. Medinnis, N. Ozdes, P.E. Schlein, M.T. Zeyrek, J.G. Zweizig, Nucl. Phys. B 514, 3 (1998)

    Article  ADS  Google Scholar 

  55. M.M. Brisudova, L. Burakovsky, T. Goldman, Phys. Rev. D 61, 054013 (2000). arXiv:hep-ph/9906293

    Article  ADS  Google Scholar 

  56. M.M. Brisudova, L. Burakovsky, T. Goldman, arXiv:hep-ph/9810296

  57. M.M. Brisudova, L. Burakovsky, T. Goldman, A. Szczepaniak, Phys. Rev. D 67, 094016 (2003). arXiv:nucl-th/0303012v2

    Article  ADS  Google Scholar 

  58. G.S. Bali, Phys. Rep. 343, 1–136 (2001). arXiv:hep-ph/0001312

    Article  ADS  MATH  Google Scholar 

  59. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). arXiv:hep-ph/0410047

    Article  ADS  Google Scholar 

  60. E. Eichten, S. Godfrey, H. Mahlke, J.L. Rosner, Rev. Mod. Phys. 80, 1161 (2008). arXiv:hep-ph/0701208

    Article  ADS  Google Scholar 

  61. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.-M. Yan, Phys. Rev. D 21, 203 (1980)

    Article  ADS  Google Scholar 

  62. C. Quigg, J.L. Rosner, Phys. Rep. 56, 167–235 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  63. M.N. Sergeenko, Z. Phys. C 64, 315 (1994)

    Article  ADS  Google Scholar 

  64. M.N. Sergeenko, Phys. At. Nucl. 56, 365 (1993)

    Google Scholar 

  65. A. Kirk, Yad. Fiz. 62, 439 (1999)

    Google Scholar 

  66. L. Morand et al. (The CLAS Collaboration), Eur. Phys. J. A 24, 445–458 (2005). DAPNIA-05-54. JLAB-PHY-05-297. arXiv:hep-ex/0504057

    Article  ADS  Google Scholar 

  67. L. Morand, D. Doré, M. Gar’con, M. Guidal, J.-M. Laget et al. (The CLAS collaboration), Phys. Rev. D 70, 054023 (2004). arXiv:hep-ex/0504057v1

    Article  Google Scholar 

  68. M. Battaglieri et al. (The CLAS Collaboration), Phys. Rev. Lett. 90, 022002 (2003). JLAB-PHY-03-04. arXiv:hep-ex/0210023

    Article  ADS  Google Scholar 

  69. M. Battaglieri et al. (The CLAS Collaboration), Phys. Rev. Lett. 87, 172002 (2001). JLAB-PHY-01-104. arXiv:hep-ex/0107028

    Article  ADS  Google Scholar 

  70. P.D.B. Collins, P.J. Kearney, Z. Phys. C 22, 277 (1984)

    Article  ADS  Google Scholar 

  71. M. Guidal, J.-M. Laget, M. Vanderhaeghen, Nucl. Phys. A 627, 645 (1997)

    Article  ADS  Google Scholar 

  72. J.-M. Laget, Phys. Rev. D 70, 054023 (2004). JLAB-THY-04-67. DAPNIA-04-207. arXiv:hep-ph/0406153

    Article  ADS  Google Scholar 

  73. F. Cano, J.M. Laget (DAPNIA, Saclay), Phys. Rev. D 65, 074022 (2002). arXiv:hep-ph/0111146

    Article  ADS  Google Scholar 

  74. S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973)

    Article  ADS  Google Scholar 

  75. M.N. Sergeenko, Phys. Rev. D 61, 056010 (2000)

    Article  ADS  Google Scholar 

  76. P.V. Landshoff, O. Nachtman, Z. Phys. C 35, 405 (1987)

    Article  ADS  Google Scholar 

  77. A.B. Kaidalov, Phys. Lett. B 116, 459 (1982)

    Article  ADS  Google Scholar 

  78. A.B. Kaidalov, K.A. Ter-Martirosyan, Phys. Lett. B 117, 247 (1982)

    Article  ADS  Google Scholar 

  79. G.I. Lykasov, G.H. Arakelian, M.N. Sergeenko, Phys. Part. Nucl. 30, 343–368 (1999)

    Article  Google Scholar 

  80. G.I. Lykasov, M.N. Sergeenko, Z. Phys. C 70, 455 (1996)

    Article  Google Scholar 

  81. G.I. Lykasov, M.N. Sergeenko, Z. Phys. C 56, 697 (1992)

    Article  ADS  Google Scholar 

  82. G.I. Lykasov, M.N. Sergeenko, Z. Phys. C 52, 635 (1991)

    Article  ADS  Google Scholar 

  83. P. González, V. Mathieu, V. Vento, arXiv:1108.2347v2

  84. J. Sucher, Phys. Rev. D 51, 5965 (1995)

    Article  ADS  Google Scholar 

  85. C. Semay, R. Ceuleneer, Phys. Rev. D 48, 4361 (1993)

    Article  ADS  Google Scholar 

  86. M.N. Sergeenko, Mod. Phys. Lett. A 12(37), 2859 (1997). arXiv:quant-ph/9911081v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. M.N. Sergeenko, Phys. Rev. A 53, 3798 (1996). arXiv:quant-ph/9911075

    Article  MathSciNet  ADS  Google Scholar 

  88. M.N. Sergeenko, Mod. Phys. Lett. A 15, 83 (2000). arXiv:quant-ph/9912069

    Article  MathSciNet  ADS  Google Scholar 

  89. M.N. Sergeenko, Mod. Phys. Lett. A 13, 33 (1998). arXiv:quant-ph/9911089

    Article  ADS  MATH  Google Scholar 

  90. M.N. Sergeenko, Int. J. Mod. Phys. A 18, 1 (2003). arXiv:quant-ph/0010084

    Article  MathSciNet  Google Scholar 

  91. C. Semay, R. Ceuleneer, Phys. Rev. D 48, 4361 (1992)

    Article  ADS  Google Scholar 

  92. W.H. Blask et al., Z. Phys. A 337, 327 (1990)

    Article  ADS  Google Scholar 

  93. G.A. Baker, P. Graves-Morris, in Padé Approximants, ed. by G.-C. Rota (Addison-Wesley, London, 1981), pp. 287–305

    Google Scholar 

  94. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010), and 2011 partial update for the 2012 edition

    Article  ADS  Google Scholar 

  95. J.R. Cudell, A. Donnachie, P.V. Landshoff, Phys. Lett. B 448, 281 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank N.M. Shumeiko, A.A. Pankov and Yu.A. Kurochkin for support and constant interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Sergeenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeenko, M.N. Glueball masses and Regge trajectories for the QCD-inspired potential. Eur. Phys. J. C 72, 2128 (2012). https://doi.org/10.1140/epjc/s10052-012-2128-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2128-5

Keywords

Navigation