Skip to main content
Log in

Minimal flavour violation and beyond

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We review the formulation of the Minimal Flavour Violation (MFV) hypothesis in the quark sector, as well as some “variations on a theme” based on smaller flavour symmetry groups and/or less minimal breaking terms. We also review how these hypotheses can be tested in B decays and by means of other flavour-physics observables. The phenomenological consequences of MFV are discussed both in general terms, employing a general effective theory approach, and in the specific context of the Minimal Supersymmetric extension of the SM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The notion of MFV can also be extended to the lepton sector; however, in this case there is not a unique way to define the minimal sources of flavour symmetry breaking if one wants to accommodate non-vanishing neutrino masses. We postpone a discussion about this point to Sect. 3.3.

  2. As pointed out in [4], this statement is not fully correct since the a i could have non-vanishing flavour-blind phases proportional the Jarlskog invariant J CP=det[Y u(Y u),Y d(Y d)]. However, the smallness of J CP implies that these phases play a negligible role in flavour-violating observables (unless enhanced by unnaturally large coefficients).

  3. The Unitarity Triangle shown on the left plot of Fig. 1 includes also the \(\varDelta M_{B_{s}}/\varDelta M_{B_{d}}\) constraint, assuming this ratio is not modified with respect to the SM. This condition holds only in the so-called constrained MFV scenario of Ref. [5] (see Sect. 2.2).

  4. The conclusion that K decays are the most sensitive probes of possible deviations from the strict MFV ansatz follows from the strong suppression of the sd short-distance amplitude in the SM [\(V_{td}V_{ts}^{*} ={\mathcal{O}}(10^{-4})\)], and goes beyond the hypothesis of an underlying GUT. This is the reason why \(K \to\pi\nu\bar{\nu}\) decays, which are the best probes of sd ΔF=1 short-distance amplitudes, play a key role in any extension of the SM containing non-minimal sources of flavour symmetry breaking.

  5. The combination of this flavour symmetry with the split-family hypothesis was dubbed “effective MFV” in Refs. [65, 66] but we stress that it goes beyond MFV in the sense of Sect. 2.

References

  1. G. Isidori, Y. Nir, G. Perez, Annu. Rev. Nucl. Part. Sci. 60, 355 (2010). arXiv:1002.0900 [hep-ph]

    Article  ADS  Google Scholar 

  2. R. Chivukula, H. Georgi, Phys. Lett. B 188, 99 (1987)

    Article  ADS  Google Scholar 

  3. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155–187 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  4. L. Mercolli, C. Smith, Nucl. Phys. B 817, 1–24 (2009). arXiv:0902.1949 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  5. A. Buras, P. Gambino, M. Gorbahn, S. Jager, L. Silvestrini, Phys. Lett. B 500, 161–167 (2001). arXiv:hep-ph/0007085

    Article  ADS  Google Scholar 

  6. T. Hurth, G. Isidori, J.F. Kamenik, F. Mescia, Nucl. Phys. B 808, 326–346 (2009). arXiv:0807.5039 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  7. M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 0803, 049 (2008). arXiv:0707.0636 [hep-ph]

    Article  ADS  Google Scholar 

  8. M. Bona et al. (UTfit Collaboration), Phys. Rev. Lett. 97, 151803 (2006). arXiv:hep-ph/0605213

    Article  ADS  Google Scholar 

  9. T. Feldmann, T. Mannel, J. High Energy Phys. 0702, 067 (2007). arXiv:hep-ph/0611095

    Article  ADS  Google Scholar 

  10. G. Isidori, J.F. Kamenik, Z. Ligeti, G. Perez, arXiv:1111.4987 [hep-ph]

  11. R. Aaij et al. (LHCb Collaboration), arXiv:1112.0938 [hep-ex]

  12. A. Ali, D. London, Eur. Phys. J. C 9, 687–703 (1999). arXiv:hep-ph/9903535

    ADS  Google Scholar 

  13. A.J. Buras, Acta Phys. Pol. B 34, 5615–5668 (2003). arXiv:hep-ph/0310208

    ADS  Google Scholar 

  14. A.L. Kagan, G. Perez, T. Volansky, J. Zupan, Phys. Rev. D 80, 076002 (2009). arXiv:0903.1794 [hep-ph]

    Article  ADS  Google Scholar 

  15. M. Redi, A. Weiler, J. High Energy Phys. 1111, 108 (2011). arXiv:1106.6357 [hep-ph]

    Article  ADS  Google Scholar 

  16. L.J. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048–7065 (1994). arXiv:hep-ph/9306309

    Article  ADS  Google Scholar 

  17. T. Blazek, S. Raby, S. Pokorski, Phys. Rev. D 52, 4151–4158 (1995). arXiv:hep-ph/9504364

    Article  ADS  Google Scholar 

  18. G. Isidori, A. Retico, J. High Energy Phys. 0111, 001 (2001). arXiv:hep-ph/0110121

    Article  ADS  Google Scholar 

  19. A.J. Buras, M.V. Carlucci, S. Gori, G. Isidori, J. High Energy Phys. 1010, 009 (2010). arXiv:1005.5310 [hep-ph]

    Article  ADS  Google Scholar 

  20. M.S. Carena, D. Garcia, U. Nierste, C.E. Wagner, Nucl. Phys. B 577, 88–120 (2000). arXiv:hep-ph/9912516

    Article  ADS  Google Scholar 

  21. G. Degrassi, P. Gambino, G. Giudice, J. High Energy Phys. 0012, 009 (2000). arXiv:hep-ph/0009337

    Article  ADS  Google Scholar 

  22. M.S. Carena, D. Garcia, U. Nierste, C.E. Wagner, Phys. Lett. B 499, 141–146 (2001). arXiv:hep-ph/0010003

    Article  ADS  Google Scholar 

  23. C. Hamzaoui, M. Pospelov, M. Toharia, Phys. Rev. D 59, 095005 (1999). arXiv:hep-ph/9807350

    Article  ADS  Google Scholar 

  24. K. Babu, C.F. Kolda, Phys. Rev. Lett. 84, 228–231 (2000). arXiv:hep-ph/9909476

    Article  ADS  Google Scholar 

  25. R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 699, 330–340 (2011). arXiv:1103.2465 [hep-ex]

    Article  ADS  Google Scholar 

  26. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 191802 (2011). arXiv:1107.5834 [hep-ex]

    Article  ADS  Google Scholar 

  27. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 239903 (2011). arXiv:1107.2304 [hep-ex]

    Article  ADS  Google Scholar 

  28. W.-S. Hou, Phys. Rev. D 48, 2342–2344 (1993)

    Article  ADS  Google Scholar 

  29. G. Blankenburg, G. Isidori, arXiv:1107.1216 [hep-ph]

  30. J.R. Ellis, J.S. Lee, A. Pilaftsis, Phys. Rev. D 76, 115011 (2007). arXiv:0708.2079 [hep-ph]

    Article  ADS  Google Scholar 

  31. P. Paradisi, D.M. Straub, Phys. Lett. B 684, 147–153 (2010). arXiv:0906.4551 [hep-ph]

    Article  ADS  Google Scholar 

  32. W. Altmannshofer, A. Buras, P. Paradisi, Phys. Lett. B 669, 239–245 (2008). arXiv:0808.0707 [hep-ph]

    Article  ADS  Google Scholar 

  33. A.J. Buras, G. Isidori, P. Paradisi, Phys. Lett. B 694, 402–409 (2011). arXiv:1007.5291 [hep-ph]

    Article  ADS  Google Scholar 

  34. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, Nucl. Phys. B 830, 17–94 (2010). arXiv:0909.1333 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  35. T. Feldmann, T. Mannel, Phys. Rev. Lett. 100, 171601 (2008). arXiv:0801.1802 [hep-ph]

    Article  ADS  Google Scholar 

  36. R. Alonso, M. Gavela, L. Merlo, S. Rigolin, J. Yepes, arXiv:1201.1511 [hep-ph]

  37. R. Alonso, M. Gavela, L. Merlo, S. Rigolin, J. High Energy Phys. 1107, 012 (2011). arXiv:1103.2915 [hep-ph]

    Article  ADS  Google Scholar 

  38. E. Nardi, Phys. Rev. D 84, 036008 (2011). arXiv:1105.1770 [hep-ph]

    Article  ADS  Google Scholar 

  39. M. Albrecht, T. Feldmann, T. Mannel, J. High Energy Phys. 1010, 089 (2010). arXiv:1002.4798 [hep-ph]

    Article  ADS  Google Scholar 

  40. R. Zwicky, T. Fischbacher, Phys. Rev. D 80, 076009 (2009). arXiv:0908.4182 [hep-ph]

    Article  ADS  Google Scholar 

  41. B. Grinstein, M. Redi, G. Villadoro, J. High Energy Phys. 1011, 067 (2010). arXiv:1009.2049 [hep-ph]

    Article  ADS  Google Scholar 

  42. A.J. Buras, M.V. Carlucci, L. Merlo, E. Stamou, arXiv:1112.4477 [hep-ph]

  43. V. Cirigliano, B. Grinstein, G. Isidori, M.B. Wise, Nucl. Phys. B 728, 121–134 (2005). arXiv:hep-ph/0507001

    Article  ADS  Google Scholar 

  44. S. Davidson, F. Palorini, Phys. Lett. B 642, 72–80 (2006). arXiv:hep-ph/0607329

    Article  ADS  Google Scholar 

  45. M. Gavela, T. Hambye, D. Hernandez, P. Hernandez, J. High Energy Phys. 0909, 038 (2009). arXiv:0906.1461 [hep-ph]

    Article  ADS  Google Scholar 

  46. R. Alonso, G. Isidori, L. Merlo, L.A. Munoz, E. Nardi, J. High Energy Phys. 1106, 037 (2011). arXiv:1103.5461 [hep-ph]

    Article  ADS  Google Scholar 

  47. B. Grinstein, V. Cirigliano, G. Isidori, M.B. Wise, Nucl. Phys. B 763, 35–48 (2007). arXiv:hep-ph/0608123

    Article  ADS  MATH  Google Scholar 

  48. S.P. Martin, arXiv:hep-ph/9709356

  49. J.R. Ellis, S. Heinemeyer, K. Olive, A. Weber, G. Weiglein, J. High Energy Phys. 0708, 083 (2007). arXiv:0706.0652 [hep-ph]

    Article  ADS  Google Scholar 

  50. O. Buchmueller, R. Cavanaugh, D. Colling, A. de Roeck, M. Dolan et al., Eur. Phys. J. C 71, 1634 (2011). * Temporary entry * arXiv:1102.4585 [hep-ph]

    Article  ADS  Google Scholar 

  51. O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis et al., arXiv:1110.3568 [hep-ph]

  52. L. Hall, L. Randall, Phys. Rev. Lett. 65, 2939–2942 (1990)

    Article  ADS  Google Scholar 

  53. P. Paradisi, M. Ratz, R. Schieren, C. Simonetto, Phys. Lett. B 668, 202–209 (2008). arXiv:0805.3989 [hep-ph]

    Article  ADS  Google Scholar 

  54. G. Colangelo, E. Nikolidakis, C. Smith, Eur. Phys. J. C 59, 75–98 (2009). arXiv:0807.0801 [hep-ph]

    Article  ADS  Google Scholar 

  55. M. Dine, A.E. Nelson, Phys. Rev. D 48, 1277–1287 (1993). arXiv:hep-ph/9303230

    Article  ADS  Google Scholar 

  56. M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51, 1362–1370 (1995). arXiv:hep-ph/9408384

    Article  ADS  Google Scholar 

  57. G. Giudice, R. Rattazzi, Phys. Rep. 322, 419–499 (1999). arXiv:hep-ph/9801271

    Article  ADS  Google Scholar 

  58. W. Altmannshofer, A.J. Buras, D. Guadagnoli, J. High Energy Phys. 0711, 065 (2007). arXiv:hep-ph/0703200

    Article  ADS  Google Scholar 

  59. W. Altmannshofer, M. Carena, S. Gori, A. de la Puente, Phys. Rev. D 84, 095027 (2011). arXiv:1107.3814 [hep-ph]

    Article  ADS  Google Scholar 

  60. W. Altmannshofer, M. Carena, arXiv:1110.0843 [hep-ph]

  61. S. Dimopoulos, G. Giudice, Phys. Lett. B 357, 573–578 (1995). arXiv:hep-ph/9507282

    Article  ADS  Google Scholar 

  62. A.G. Cohen, D. Kaplan, A. Nelson, Phys. Lett. B 388, 588–598 (1996). arXiv:hep-ph/9607394

    Article  ADS  Google Scholar 

  63. ATLAS Collaboration, ATLAS-CONF-2011-098

  64. G.F. Giudice, M. Nardecchia, A. Romanino, Nucl. Phys. B 813, 156–173 (2009). arXiv:0812.3610 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  65. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone, D. Zhuridov, J. High Energy Phys. 1012, 070 (2010). arXiv:1011.0730 [hep-ph]

    Article  ADS  Google Scholar 

  66. R. Barbieri, P. Lodone, D.M. Straub, J. High Energy Phys. 1105, 049 (2011). arXiv:1102.0726 [hep-ph]

    Article  ADS  Google Scholar 

  67. R. Barbieri, P. Campli, G. Isidori, F. Sala, D.M. Straub, arXiv:1108.5125 [hep-ph]

  68. M. Dine, R.G. Leigh, A. Kagan, Phys. Rev. D 48, 4269–4274 (1993). arXiv:hep-ph/9304299

    Article  ADS  Google Scholar 

  69. A. Pomarol, D. Tommasini, Nucl. Phys. B 466, 3–24 (1996). arXiv:hep-ph/9507462

    Article  ADS  Google Scholar 

  70. R. Barbieri, G. Dvali, L.J. Hall, Phys. Lett. B 377, 76–82 (1996). arXiv:hep-ph/9512388

    Article  ADS  Google Scholar 

  71. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D.M. Straub, Eur. Phys. J. C 71, 1725 (2011). arXiv:1105.2296 [hep-ph]

    Article  ADS  Google Scholar 

  72. LHCb Collaboration, LHCb-CONF-2011-056

  73. CDF Collaboration, Public Note 10206

  74. D0 Collaboration, D0Note 6098-CONF

Download references

Acknowledgements

We thank R. Barbieri, A.J. Buras, G. Giudice, G. Perez, and W. Altmannshofer for useful comments and discussions. G.I. acknowledges the support of the TU München—Institute for Advanced Study, funded by the German Excellence Initiative, and the EU ERC Advanced Grant FLAVOUR (267104). D.M.S. is supported by the EU ITN “Unification in the LHC Era”, contract PITN-GA-2009-237920 (UNILHC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Straub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isidori, G., Straub, D.M. Minimal flavour violation and beyond. Eur. Phys. J. C 72, 2103 (2012). https://doi.org/10.1140/epjc/s10052-012-2103-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2103-1

Keywords

Navigation