Skip to main content
Log in

Revisiting the Higgs mass and dark matter in the CMSSM

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Taking into account the available accelerator and astrophysical constraints, the mass of the lightest neutral Higgs boson h in the minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses (CMSSM) has been estimated to lie between 114 and ∼130 GeV. Recent data from ATLAS and CMS hint that m h ∼125 GeV, though m h ∼119 GeV may still be a possibility. Here we study the consequences for the parameters of the CMSSM and direct dark matter detection if the Higgs hint is confirmed, focusing on the strips in the (m 1/2,m 0) planes for different tanβ and A 0 where the relic density of the lightest neutralino χ falls within the range of the cosmological cold dark matter density allowed by WMAP and other experiments. We find that if m h ∼125 GeV focus-point strips would be disfavoured, as would the low-tanβ \({\tilde{\tau}}\)χ and \({\tilde{t}}_{1} \)χ coannihilation strips, whereas the \({\tilde{\tau}}\)χ coannihilation strip at large tanβ and A 0>0 would be favoured, together with its extension to a funnel where rapid annihilation via direct-channel H/A poles dominates. On the other hand, if m h ∼119 GeV more options would be open. We give parameterisations of WMAP strips with large tanβ and fixed A 0/m 0>0 that include portions compatible with m h =125 GeV, and present predictions for spin-independent elastic dark matter scattering along these strips. These are generally low for models compatible with m h =125 GeV, whereas the XENON100 experiment already excludes some portions of strips where m h is smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. As already mentioned, we focus here on μ>0. This assumption was motivated in the past by indications from g μ −2 and the desire to avoid strong constraints from b [9297], but should perhaps be reviewed now in light of the growing tension between LHC missing-energy constraints [90, 91] and g μ −2 [98, 99].

  2. The true WMAP strips corresponding to Ω χ h 2=0.112±0.012 [50] at the 2σ level are often invisibly narrow. Accordingly, in these and most subsequent figure panels, the WMAP strips have been made more visible by colouring regions where 0.05<Ω χ h 2<0.15.

  3. Also visible in these panels between m 1/2∼1000 GeV and ∼1500 GeV is another WMAP-compatible strip running roughly parallel to the \({\tilde{\tau}}_{1} \)χ coannihilation strip, which is due to rapid \({\tilde{\tau}}_{1} \)\({\bar{\tilde{\tau}}_{1}}\) annihilation through direct-channel H/A poles.

  4. These funnels have been coloured only in the range Ω χ h 2=0.112±0.012 allowed by WMAP at the 2σ level.

  5. The available results from LHC missing-energy searches [90, 91] are insufficient to indicate which portions of this line might be excluded.

  6. See [65] for a discussion of the uncertainty in this parameter.

  7. This connection is only qualitative, since the processes dominating t-channel exchange are not identical with the processes dominating s-channel annihilation, and the cosmological annihilations involve a mixture of P- and S-wave annihilations.

References

  1. M. Baak et al., arXiv:1107.0975 [hep-ph]

  2. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83 (1991)

    Article  ADS  Google Scholar 

  3. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 262, 477 (1991)

    Article  ADS  Google Scholar 

  4. Y. Okada, M. Yamaguchi, T. Yanagida, Phys. Lett. B 262, 54 (1991)

    Article  ADS  Google Scholar 

  5. Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1 (1991)

    Article  ADS  Google Scholar 

  6. A. Yamada, Phys. Lett. B 263, 233 (1991)

    Article  ADS  Google Scholar 

  7. H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991)

    Article  ADS  Google Scholar 

  8. M. Drees, M.M. Nojiri, Phys. Rev. D 45, 2482 (1992)

    Article  ADS  Google Scholar 

  9. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 274, 191 (1992)

    Article  ADS  Google Scholar 

  10. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 286, 307 (1992)

    Article  ADS  Google Scholar 

  11. The most recent combination of ATLAS and CMS results may be found in: ATLAS and CMS Collaborations. https://cdsweb.cern.ch/record/1399607/files/HIG-11-023-pas.pdf

  12. ATLAS Collaboration, Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex]

    Article  ADS  Google Scholar 

  13. ATLAS Collaboration, Phys. Rev. Lett. 108, 111803 (2012). arXiv:1202.1414 [hep-ex]

    Article  ADS  Google Scholar 

  14. ATLAS Collaboration, Phys. Lett. B 710, 383 (2012). arXiv:1202.1415 [hep-ex]

    Article  ADS  Google Scholar 

  15. ATLAS Collaboration, arXiv:1202.1636 [hep-ex]

  16. CMS Collaboration, J. High Energy Phys. 1204, 36 (2012)

    ADS  Google Scholar 

  17. CMS Collaboration, Phys. Lett. B 710, 403 (2012)

    Article  ADS  Google Scholar 

  18. CMS Collaboration, Phys. Lett. B 710, 26 (2012)

    Article  ADS  Google Scholar 

  19. CMS Collaboration, Phys. Lett. B 710, 91 (2012)

    Article  ADS  Google Scholar 

  20. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  21. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  22. M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234

    Article  ADS  Google Scholar 

  23. H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321

    Article  ADS  Google Scholar 

  24. H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509

    Article  ADS  Google Scholar 

  25. H. Baer, M. Brhlik, M.A. Diaz, J. Ferrandis, P. Mercadante, P. Quintana, X. Tata, Phys. Rev. D 63, 015007 (2001). arXiv:hep-ph/0005027

    Article  ADS  Google Scholar 

  26. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49, 6173 (1994). arXiv:hep-ph/9312272

    Article  ADS  Google Scholar 

  27. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 388, 97 (1996). arXiv:hep-ph/9607292

    Article  ADS  Google Scholar 

  28. J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 413, 355 (1997). arXiv:hep-ph/9705444

    Article  ADS  Google Scholar 

  29. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445

    Article  ADS  Google Scholar 

  30. V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403

    Article  ADS  Google Scholar 

  31. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169

    Article  ADS  Google Scholar 

  32. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098

    Article  ADS  Google Scholar 

  33. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189

    Article  ADS  Google Scholar 

  34. L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334

    Article  ADS  Google Scholar 

  35. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    Article  ADS  Google Scholar 

  36. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001

    Article  ADS  Google Scholar 

  37. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110

    Article  MathSciNet  ADS  Google Scholar 

  38. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417

  40. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003). arXiv:hep-ph/0303043

    Article  ADS  Google Scholar 

  41. H. Baer, C. Balazs, J. Cosmol. Astropart. Phys. 0305, 006 (2003). arXiv:hep-ph/0303114

    Article  ADS  Google Scholar 

  42. A.B. Lahanas, D.V. Nanopoulos, Phys. Lett. B 568, 55 (2003). arXiv:hep-ph/0303130

    Article  ADS  Google Scholar 

  43. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003). arXiv:hep-ph/0303201

    Article  ADS  Google Scholar 

  44. C. Munoz, Int. J. Mod. Phys. A 19, 3093 (2004). arXiv:hep-ph/0309346

    Article  ADS  Google Scholar 

  45. R. Arnowitt, B. Dutta, B. Hu, arXiv:hep-ph/0310103

  46. J. Ellis, K.A. Olive, arXiv:1001.3651 [astro-ph.CO]

  47. O. Buchmueller et al., Phys. Lett. B 657, 87 (2007) arXiv:0707.3447 [hep-ph]

    Article  ADS  Google Scholar 

  48. O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph]

    Article  ADS  Google Scholar 

  49. O. Buchmueller et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]

    Article  ADS  Google Scholar 

  50. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

    Article  ADS  Google Scholar 

  51. J. Ellis, T. Falk, K.A. Olive, Phys. Lett. B 444, 367 (1998). arXiv:hep-ph/9810360

    Article  ADS  Google Scholar 

  52. J. Ellis, T. Falk, K.A. Olive, M. Srednicki, Astropart. Phys. 13, 181 (2000). [Erratum-ibid. 15 (2001) 413] arXiv:hep-ph/9905481

    Article  ADS  Google Scholar 

  53. J.L. Feng, K.T. Matchev, T. Moroi, Phys. Rev. D 61, 075005 (2000). arXiv:hep-ph/9909334

    Article  ADS  Google Scholar 

  54. C. Boehm, A. Djouadi, M. Drees, Phys. Rev. D 62, 035012 (2000). arXiv:hep-ph/9911496

    Article  ADS  Google Scholar 

  55. J.R. Ellis, K.A. Olive, Y. Santoso, Astropart. Phys. 18, 395 (2003). arXiv:hep-ph/0112113

    Article  ADS  Google Scholar 

  56. K. Huitu, L. Leinonen, J. Laamanen, Phys. Rev. D 84, 075021 (2011). arXiv:1107.2128 [hep-ph]

    Article  ADS  Google Scholar 

  57. M. Battaglia et al., Eur. Phys. J. C 22, 535 (2001). arXiv:hep-ph/0106204

    Article  ADS  Google Scholar 

  58. M. Battaglia, A. De Roeck, J.R. Ellis, F. Gianotti, K.A. Olive, L. Pape, Eur. Phys. J. C 33, 273 (2004). arXiv:hep-ph/0306219

    Article  ADS  Google Scholar 

  59. E.A. Baltz, M. Battaglia, M.E. Peskin, T. Wizansky, Phys. Rev. D 74, 103521 (2006). hep-ph/0602187

    Article  ADS  Google Scholar 

  60. A. De Roeck, J.R. Ellis, F. Gianotti, F. Moortgat, K.A. Olive, L. Pape, Eur. Phys. J. C 49, 1041 (2007). hep-ph/0508198

    Article  ADS  Google Scholar 

  61. B.C. Allanach, M. Battaglia, G.A. Blair, M.S. Carena, A. De Roeck, A. Dedes, A. Djouadi, D. Gerdes et al., Eur. Phys. J. C 25, 113 (2002). hep-ph/0202233

    Article  ADS  Google Scholar 

  62. J.A. Aguilar-Saavedra, A. Ali, B.C. Allanach, R.L. Arnowitt, H.A. Baer, J.A. Bagger, C. Balazs, V.D. Barger et al., Eur. Phys. J. C 46, 43 (2006). hep-ph/0511344

    Article  ADS  Google Scholar 

  63. J. Ellis, T. Hahn, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0710, 092 (2007). arXiv:0709.0098 [hep-ph]

    Article  ADS  Google Scholar 

  64. J.R. Ellis, J.L. Feng, A. Ferstl, K.T. Matchev, K.A. Olive, Eur. Phys. J. C 24, 311 (2002). arXiv:astro-ph/0110225

    Article  ADS  Google Scholar 

  65. J.R. Ellis, K.A. Olive, C. Savage, Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656 [hep-ph]

    Article  ADS  Google Scholar 

  66. J. Ellis, K.A. Olive, C. Savage, V.C. Spanos, Phys. Rev. D 81, 085004 (2010). arXiv:0912.3137 [hep-ph]

    Article  ADS  Google Scholar 

  67. J. Ellis, K.A. Olive, V.C. Spanos, J. Cosmol. Astropart. Phys. 1110, 024 (2011). arXiv:1106.0768 [hep-ph]

    Article  ADS  Google Scholar 

  68. S.S. AbdusSalam, B.C. Allanach, H.K. Dreiner, J. Ellis, U. Ellwanger, J. Gunion, S. Heinemeyer, M. Kraemer et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph]

    Article  ADS  Google Scholar 

  69. J.R. Ellis, D.V. Nanopoulos, K.A. Olive, Y. Santoso, Phys. Lett. B 633, 583 (2006). arXiv:hep-ph/0509331

    Article  ADS  Google Scholar 

  70. O. Buchmueller et al., Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph]

    Article  ADS  Google Scholar 

  71. O. Buchmueller et al., Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 [hep-ph]

    Article  ADS  Google Scholar 

  72. O. Buchmueller, R. Cavanaugh, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori et al., Eur. Phys. J. C 72, 1878 (2012). arXiv:1110.3568 [hep-ph]

    Article  ADS  Google Scholar 

  73. O. Buchmueller, R. Cavanaugh, A. De Roeck, M.J. Dolan, J.R. Ellis, H. Flacher, S. Heinemeyer, G. Isidori et al., arXiv:1112.3564 [hep-ph]

  74. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  75. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  76. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Article  MATH  ADS  Google Scholar 

  77. M. Frank et al., J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  78. see http://www.feynhiggs.de

  79. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  80. J.L. Feng, K.T. Matchev, D. Sanford, Phys. Rev. D 85, 075007 (2012). arXiv:1112.3021 [hep-ph]

    Article  ADS  Google Scholar 

  81. S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  82. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  83. P. Draper, P. Meade, M. Reece, D. Shih, arXiv:1112.3068 [hep-ph]

  84. S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph]

    Article  ADS  Google Scholar 

  85. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, arXiv:1112.3647 [hep-ph]

  86. C. Strege, G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri, R. Trotta, J. Cosmol. Astropart. Phys. 1203, 030 (2012). arXiv:1112.4192 [hep-ph]

    Article  ADS  Google Scholar 

  87. N. Karagiannakis, G. Lazarides, C. Pallis, arXiv:1201.2111 [hep-ph]

  88. L. Aparicio, D.G. Cerdeno, L.E. Ibanez, arXiv:1202.0822 [hep-ph]

  89. E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 [astro-ph.CO]

    Article  ADS  Google Scholar 

  90. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 221804 (2011). arXiv:1109.2352 [hep-ex]

    Article  ADS  Google Scholar 

  91. ATLAS Collaboration, Phys. Lett. B 710, 67 (2012). arXiv:1109.6572 [hep-ex]

    Article  ADS  Google Scholar 

  92. M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007). arXiv:hep-ph/0609232

    Article  ADS  Google Scholar 

  93. M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Nucl. Phys. B 534, 3 (1998). arXiv:hep-ph/9806308

    Article  ADS  Google Scholar 

  94. G. Degrassi, P. Gambino, G.F. Giudice, J. High Energy Phys. 0012, 009 (2000). arXiv:hep-ph/0009337

    Article  ADS  Google Scholar 

  95. M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Phys. Lett. B 499, 141 (2001). arXiv:hep-ph/0010003

    Article  ADS  Google Scholar 

  96. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  97. The Heavy Flavor Averaging Group, D. Asner, et al., arXiv:1010.1589 [hep-ex], with updates available at http://www.slac.stanford.edu/xorg/hfag/osc/end_2009

  98. G. Bennett et al. (The Muon g-2 Collaboration). Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008

    Article  ADS  Google Scholar 

  99. G. Bennett et al., Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

    Article  ADS  Google Scholar 

  100. CDF and D0 Collaborations, arXiv:1007.3178 [hep-ex]

  101. Information about this code is available from K.A. Olive: it contains important contributions from T. Falk, A. Ferstl, G. Ganis, A. Mustafayev, J. McDonald, K.A. Olive, P. Sandick, Y. Santoso and M. Srednicki

  102. R.L. Arnowitt, B. Dutta, T. Kamon, M. Tanaka, Phys. Lett. B 538, 121 (2002). hep-ph/0203069

    Article  ADS  Google Scholar 

  103. A. Dedes, H.K. Dreiner, U. Nierste, Phys. Rev. Lett. 87, 251804 (2001). hep-ph/0108037

    Article  ADS  Google Scholar 

  104. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). hep-ph/0205325

    Article  MathSciNet  ADS  Google Scholar 

  105. J.R. Ellis, K.A. Olive, V.C. Spanos, Phys. Lett. B 624, 47–59 (2005). hep-ph/0504196

    Article  ADS  Google Scholar 

  106. B. Dutta, Y. Mimura, Y. Santoso, Phys. Lett. B 706, 188 (2011). arXiv:1107.3020 [hep-ph]

    Article  ADS  Google Scholar 

  107. S. Akula, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 84, 115011 (2011). arXiv:1107.3535 [hep-ph]

    Article  ADS  Google Scholar 

  108. A.G. Akeroyd, F. Mahmoudi, D.M. Santos, J. High Energy Phys. 1112, 088 (2011). arXiv:1108.3018 [hep-ph]

    Article  ADS  Google Scholar 

  109. C. Beskidt, W. de Boer, D.I. Kazakov, F. Ratnikov, E. Ziebarth, V. Zhukov, Phys. Lett. B 705, 493 (2011). arXiv:1109.6775 [hep-ex]

    Article  ADS  Google Scholar 

  110. R. Aaij et al. (LHCb Collaboration), arXiv:1203.4493 [hep-ex]

Download references

Acknowledgements

This work has been supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. The work of K.A.O. is also supported in part by DOE grant DE-FG02-94ER-40823 at the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Olive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J., Olive, K.A. Revisiting the Higgs mass and dark matter in the CMSSM. Eur. Phys. J. C 72, 2005 (2012). https://doi.org/10.1140/epjc/s10052-012-2005-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2005-2

Keywords

Navigation